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Abstract

Python has become a popular choice for creating malware
due to its ease of development, wide user base, pre-built mod-
ules, and multi-platform compatibility. Python’s popularity
has induced demand for Python decompilers, but community
efforts to maintain automatic Python decompilation tools have
been hindered by Python’s unstable bytecode specification.
Every year, language features are added, code generation un-
dergoes significant changes, and opcodes are added, deleted,
and modified.

Our research aims to integrate Natural Language Process-
ing (NLP) techniques with classical Programming Language
(PL) theory to create a Python decompiler that adapts to new
language features and changes to the bytecode specification
with minimal human maintenance effort. PYLINGUAL uses
data-driven NLP components to automatically absorb superfi-
cial bytecode and compiler changes, while leveraging engi-
neered programmatic components for abstract control flow
reconstruction.

We demonstrate the efficacy of our approach with extensive
real-world datasets of benign and malicious Python sources
and their corresponding compiled PYC binaries. Our research
makes three major contributions: (/) we present PYLINGUAL,
a scalable, data-driven decompilation framework with state-
of-the-art support for Python versions 3.6 — 3.12; (2) we
provide a Python decompiler evaluation framework that veri-
fies decompilation results with “perfect decompilation”; and

(3) we launch PYLINGUAL as a free online service h

1 Introduction

Python has been an attractive choice for hackers and industry
developers alike due to its ease of development, wide user
base, mature ecosystem with pre-built modules, and multi-
platform compatibility [1]-[12]. Malware writers aim to bud-
get their time and resources in a way that maximizes their
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productivity, thus demanding environmental support to accel-
erate their development cycles. The growing diversity of com-
puting environments and the desire for custom attack vectors
(i.e., crafted for specific targets and scenarios) only heighten
such demands. Closed-source Python projects package com-
piled PYC binaries and their dependencies with an interpreter
for their target platforms [13], [14] to create a standalone
executable. Python decompilers reverse the above process:
unpacking the packaged executable to extract the PYC bina-
ries [15], disassembling them into bytecode sequences [16],
and ultimately recovering the source code [17], [18].

Our work aims to recover Python source code from dis-
assembled bytecode sequences. Compared to traditional bi-
naries, PYC binaries contain substantially more information,
are more decomposable, and do not contain indirect jumps.
These properties trivialize many challenges from traditional
binary decompilation. However, Python’s unique develop-
ment model imposes one key challenge that has prevented
the maturation of community Python decompilation efforts:
instruction set instability [17], [18].

Python’s bytecode specification is dynamic and constantly
evolving, as it is not bound to any underlying hardware ar-
chitecture, and the language developers eschew forwards and
backwards compatibility of the bytecode in favor of design
flexibility. Every year, opcodes are removed, added, and mod-
ified to support new language features and improve the per-
formance of existing language features. For example, the
exception handling mechanism has been reworked twice in
the last five years. Further, recent Python versions have been
adopting aggressive optimizations [19]-[22] that impact code
generation and control flow structures. The PYC bytecode
specification instability poses a practical challenge: while
implementing a traditional decompiler for any one version
is feasible, the maintenance effort required to provide cross-
version support that quickly adapts to new version releases is
daunting [17], [18].

To address this research challenge, we introduce PYLIN-
GUAL, a data-driven framework that integrates recent ad-
vances in NLP research with foundational PL principles.
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PYLINGUAL aims to demonstrate the effectiveness of ML-
based statistical approaches to correctness-sensitive, PL do-
mains. While offloading simple but labor-intensive translation
tasks to NLP models, PYLINGUAL falls back to classical PL
principles for instruction parsing and control flow reconstruc-
tion. PYLINGUAL consists of three distinct subcomponents:
(1) bytecode segmentation, (2) statement translation, and (3)
control flow reconstruction. Component boundaries are care-
fully drawn for each to be as self-contained as possible, min-
imizing engineering friction between them. To validate de-
compilation outputs, PYLINGUAL boldly embraces perfect
decompilation, which enforces strict code equivalence be-
tween the input PYC binary and the decompiled source code,
and facilitates a feedback loop to detect and understand de-
compilation errors.

Our research is built on an extensive collection of real-
world datasets from both benign and malicious sources [23]-
[25], which we plan to publish alongside source code and
established models. Evaluated against an extensive collection
of real-world datasets, PYLINGUAL achieves a 77% perfect
decompilation rate on average across Python 3.6 - 3.12, mark-
ing an average improvement of 47% over State-Of-The-Art
(SOTA) Python decompilers [17], [18], [26]. Demonstrating
PYLINGUAL’s adaptability, we were able to seamlessly ex-
tend PYLINGUAL to support Python version 3.12 with only
two weeks of effort.

PYLINGUAL makes the following contributions:

* PYLINGUAL explores a unique design direction integrat-
ing principled PL theories with neural NLP models.

* We introduce a rigorous “perfect decompilation” metric
for evaluating the correctness of decompilation results
using differential testing against the input binary.

* We evaluate PYLINGUAL across a wide range of Python
versions with the extensive dataset from benign and ma-
licious sources using the proposed metric.

To assist reverse engineers and future research efforts, we
plan to publish our source code, datasets, and models, and
we provide PYLINGUAL as a free online service ? to offer
streamlined support to reverse engineers.

2 Perfect Decompilation

In our work, we emphasize the impact of considering perfect
decompilation [27] in the design of automatic decompilers.
Decompiled code is “perfect” when recompiling that code
with the compiler configuration as the original source code,
the exact same instructions are produced. Similar terms for

the same general idea are: “exact decompilation”, “round-trip
testing”, and “function/inverse pairs”.

Benefits to automatic decompilers. Perfect decompilation
provides a strong guarantee of semantic equivalence between
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the input binary and the decompiled source code, and is trivial
to verify by simply testing for strict equality between the origi-
nal and candidate instruction sequences. These two properties
enable a black-box decompiler to easily prove the correctness
of perfectly decompiled code, which enables users to trust the
decompiler’s output, even if they do not trust the soundness
of the decompiler.

Traditional measures of decompilation accuracy, such as
equivalence modulo inputs [28], [29] or manual verification,
provide limited semantic equivalence guarantees and are ex-
pensive to measure, which often results in misleading decom-
pilation that users are unable to efficiently verify [30]. In
perfect decompilation, decompilation correctness errors are
easily detected at runtime, preventing unknown decompiler
bugs from eroding trust in the decompilation results.

Suitability for Python decompilation. Despite perfect de-
compilation’s undeniable merits, it has not been seriously
pursued by previous automatic decompiler research because:
(1) the compiler configuration used to generate the input bi-
nary must be known; and (2) satisfying perfect decompilation
is much more difficult than satisfying a weaker equivalence
metric.

On both fronts, Python decompilation is an ideal frontier
to pursue perfection because: (/) Python compilation is dom-
inated by CPython, which offers very few configuration op-
tions; and (2) Python decompilation is easier than traditional
binary decompilation because Python bytecode contains more
information and is more structured than traditional binaries.
Indeed, we will see in §3 that the core challenges of Python
decompilation are quite different from those of traditional
binary decompilation.

3 Python Bytecode

We provide background on the structure of Python bytecode,
summarize its key properties with respect to decompilation,
and briefly discuss existing Python decompilation approaches
and their pitfalls.

3.1 Code Organization

Overview. Python bytecode is organized as a tree of “code
objects” (visualized in Figure 1), each of which corresponding
to one function or class. The code in the top-level script is the
“__main__" code object, and several language features such as
list comprehensions and lambda expressions are implemented
as anonymous code objects. These code objects consist of
bytecode instructions, “semantically important” metadata, and
“debugging” metadata. Semantically important metadata pri-
marily includes tables for constants and variable symbols, as
well as flags used by the interpreter. Debugging metadata in-
cludes line number information, the source file name, and the
name of the code object, which support error reporting and
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tracebacks. For perfect decompilation, only the bytecode in-
structions and semantically important metadata need to match
between the original binary and the decompiled result.

# A class definition with main
# nested functions LOAD_CONST
STORE_FAST

class A:

def __init_ (self): class A def main()
cee LOAD_CONST LOAD_CONST
def do(self): STORE_FAST STORE_FAST
def wrapper():

FoomosWNRO

. def _init__() def do()
2 def main(): LOAD_CONST LOAD_CONST
oo STORE_FAST STORE_FAST

4

7 main() LOAD_CONST
€ STORE_FAST

1
1
1
13

1

15

16 if __name__ == "__main__ ": def wrapper()
1

18

(a) Python source code (b) Nested code object (CO) structure
Figure 1: Python Source code with corresponding nested code object
structure.

Useful properties. The organization of Python bytecode triv-
ializes several subtasks that are challenging in traditional de-
compilation. Function boundaries are clearly delineated, with
each function consisting of one code object, enabling each
code object to be considered independently. Further, within
each code object, the instructions are separated from the data
and symbol tables. Finally, variable names are semantically
important and are included in the bytecode, which improves
the readability of the decompiled code.

3.2 Control Flow Considerations

There are four broad categories of control flow in Python:
(1) jumps, (2) function calls, (3) return statements, and (4)
exceptions. Perhaps surprisingly, jump targets in Python are
statically determined and cannot cross code object boundaries.
Function call targets, in contrast, are determined at runtime;
this design choice supports the dynamic reassignment of func-
tion symbols. Return statements halt the execution of a func-
tion and return a value, but the function may resume execution
later in the case of a yield statement. Exceptions may be
raised at any point during execution to engage a secondary
control flow mechanism that engages exception handlers, exe-
cutes cleanup code, and potentially exits the code object.

Fortunately, control flow that is dynamic in the bytecode is
also dynamic in the source code. To build intuition, consider
the simple case of calling the print function. At compile
time, the code object has no way of knowing if print will
have been overwritten by an unrelated function; the function
call in the bytecode simply references the symbol “print”,
which the interpreter resolves at run time. For decompilers,
this means that as long as the correct symbols are used for
function calls, only static control flow within each code object
needs to be structured to correctly recover the source code.
It is quite straightforward to create a control flow graph that
models jumps and returns, and as we have just seen, function
calls can be effectively ignored when modelling control flow
for Python decompilation.

Unfortunately, Python’s exception handling structures are
more complex, as they combine jumps with the exception con-
trol flow mechanism. Exceptions can be raised at any time by
any instruction, with different control implications depending
on the current execution context. Further, as we discuss next,
the exception handling system has been the subject of substan-
tial modification in recent years, complicating the proposition
of cross-version support.

3.3 Specification Instability

The most significant challenge in Python decompilation is
the instability of the Python bytecode specification. Since
its initial 1991 release, has rapidly deployed feature updates,
bug fixes, and performance improvements. Each year, mi-
nor version releases introduce significant language features
and substantial changes to the bytecode representation [31],
including the addition, deletion, and modification of instruc-
tion opcodes. Recently, the Python community committed to
the “Faster CPython” project [32], resulting in several opti-
mizations that emphasize reordering instructions to reduce
the time spent by the interpreter managing control flow. Of
these optimizations, the most noteworthy was the introduction
of “zero-cost exceptions” in Python 3.11, which completely
reworked the exception handling mechanism and related byte-
code generation for exception handling structures.

3.4 Previous Python Decompilers

While creating a viable Python decompiler for any given
Python version is merely a matter of engineering, the core
challenge of Python decompilation is to scale across ver-
sions, despite the introduction of new source code features
and unpredictable changes to the bytecode specification.
uncompyle6 and decompyle3 are the two most prominent
decompilers for Python [17], [18]. uncompyle6 evolved
from earlier iterations that typically supported only one ver-
sion of Python at a time (e.g., uncompyle2 [33]). Another
Python decompilation framework is pycdc, a Python decom-
piler written in C++. Like uncompyle6 and decompyle3,
it seeks to support a broad range of Python versions.

Some existing Python decompilation frameworks depend
on version-specific grammars and statement patterns, and have
been unable to keep pace with dramatic bytecode changes
on Python’s now annual release cycle. Since the launch of
Python 3.9 in October 2020, existing decompilers have failed
to provide sufficient coverage for serious reverse engineering.
While there have been efforts to improve the coverage of
these decompilers through input preprocessing [30], ad-hoc
error correction producing unsound approximations is not a
sustainable approach for the long-term scalability of Python
decompilation.



4 PYLINGUAL Overview

As shown in Figure 2, PYLINGUAL operates in five stages
centered around three major components. First, PYLINGUAL
conducts code normalization against the source code and dis-
assembled bytecodes [16] to reduce the complexity of the
inputs to the NLP models (§4.1). Second, normalized code
objects are provided to the bytecode segmentation compo-
nent to divide the bytecode stream by statement boundaries
(§4.2). Next, the statement translation component translates
each statement of bytecode into the corresponding Python
source code statement (§4.3). Then, the control flow recon-
struction component mechanically reconstructs the necessary
indentation to reproduce the control flow in the input byte-
code (§4.4). Finally, code equivalence verification conducts
instruction-level code comparison to validate the correctness
of the decompiled Python source code (§4.5).

4.1 Code Normalization

To make PYC bytecode suitable for the segmentation and
translation tasks, PYLINGUAL replaces distracting details
such as variable names and constant values with generic
masks [34], which can be easily located in dedicated lookup
tables in the PYC binary; a generic mask derived from the
table index will be seen by the neural components, and the
original value will be mechanically restored at the source
level at the end of decompilation. This is similar to the idea
of “tokenization” in the context of compilers, which is dif-
ferent from “tokenization” as used in language modelling;
we use the term “masking” to avoid confusion between these
concepts. Further, PYLINGUAL enhances the presentation
of the bytecode instructions by annotating jump targets and
exception-handling structures using the PYC metadata. This
input preprocessing step allows PYLINGUAL to standardize
the inputs to the NLP models, even when the bytecode repre-
sentation changes significantly.

To disassemble PYC files from different Python versions,
PYLINGUAL uses xdis, a version-agnostic, open-source dis-
assembler [16], to which we contributed supporting code to
disassemble Python 3.11 and Python 3.12 binaries.

4.2 Bytecode Segmentation

Given a sequence of disassembled bytecode instructions, the
segmentation module has two goals: (1) divide the bytecode
into independently digestible statements; and (2) establish
an association between the bytecode instructions and their
corresponding statements. Statement-level segmentation is
convenient because it is simple to collect ground-truth seg-
mentations from known source code samples using debugging
symbols from the compiler, which we can use to train a model
for use in decompilation.

Alternatively, we can consider using segmenting at basic
block boundaries, which are also easy to identify mechani-
cally. However, Python bytecode statements often go beyond
control block boundaries, causing common control statements
to spread across several blocks, which presents significant
challenges to the downstream translation component. Further-
more, basic blocks can include arbitrarily many statements,
necessitating a comprehensive paragraph-to-paragraph lan-
guage model. Language models are bound to their input size,
requiring larger models that require significantly more data
and computing power to train and translate.

The segmentation model, while accurate in most cases,
is inherently limited in identifying all statement boundaries.
Both mechanical parsing and data-driven analysis fall short,
especially across different Python versions. The segmenta-
tion problem’s core nature complicates the matter: bytecode
segmentation often embeds the programmer’s control flow
decisions, which might be apparent only in distant code loca-
tions. For example, the decision to split a simple if A and
B: may have irreparable control flow ramifications later in
decompilation, depending on the presence of an else: block
at some distant point in the source code (Figure 3). On the
other hand, for a given code object, there might be several
valid segmentations (e.g., import a and import b could
become the equivalent import a, b). We can only mechan-
ically verify a candidate segmentation by verifying the result
of the subsequent decompilation process.

To remediate imperfect segmentation, we employ a dif-
ferential testing strategy with top-k candidate segmentations,
relying on PYLINGUAL’s strict accuracy assurance. We dis-
cuss the details of top-k segmentation in §5.

4.3 Statement Translation

The statement translation module translates bytecode state-
ments into Python source statements. The generic sequence-
to-sequence translation problem has already been extensively
explored in the NLP community [35]. Extending a pretrained
TS5 translation model from Salesforce/codet5-base [36],
we fine-tune the model for the Python bytecode to Python
source code translation task.

The statement translation model often struggles with long
or complex statements. While we can easily verify syntac-
tic correctness, immediately verifying semantic accuracy is
challenging. The same source code statement can generate
different bytecode depending on its surrounding context. To
address the issue and improve the translation accuracy, we
introduce a corrector model tailored for problematic statement
samples. In §6, we explore our strategy to augment the state-
ment model and the hurdles in crafting filter rules to pinpoint
error-prone statements. The ablation study in §8.4 highlights
the benefit of the corrector model.
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Figure 2: PYLINGUAL architecture.

LOAD_FAST A
POP_JUMP_IF_FALSE

0 if A and B:

1 # long if body. ..

2 else:

# else can only be on
# if A and B

0
1 B:
LOAD_FAST B } 2 # long if body.
POP_JUMP_TF_FALSE 3 [e1ses
4
5

# long if body... # else can only be on
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Figure 3: Two different possible bytecode segmentations, resulting in
different source-level meanings due to the long-range dependencies.

4.4 Control Flow Reconstruction

Given a flat list of source code statements from the statement
translation module, the control flow reconstruction module
mechanically determines each statement’s indentation level
to reconstruct the control flow in the original bytecode. By
analyzing input bytecode, PYLINGUAL constructs a Control
Dependency Graph (CDG) where each node’s distance from
the START node corresponds to the indentation level. An ex-
ample is provided in Figure 4. Since Python’s control depen-
dencies can be statically determined, we first construct the
Control Flow Graph (CFG), which can then be extended to
create a CDG [37].

0 # Control structure example

START

for i in range(10):
3 [2 for i in range(10): ]

b
2

4 # a compound if statement

5 # will span two basic blocks
B
7
8

1f1%3==0andl%5==0:
print('FizzBuzz')

(6:ifi%sa==0_...}=6

. and i %5 == 0:]

9 # else doesn't appear in CDG
10 else:
11 # indentation correlates
12 # with distance to START
13 if i % 3 == 0:
14 print('Fizz")
15 else:
16 if 1 %5 ==
17 prmt( Buzz )

e

7: print('FizzBuzz')

14: print('Fizz')

19: print(i) 17: print('Buzz')

19 print(i)

(a) Source Code (b) Control Dependence Graph (CDG)

Figure 4: A control dependence graph illustrating that indentation
depth corresponds to the shortest-path distance to the START node.

In the CDG, each node is a basic block, and there exists
an edge (u,v) if and only if a control decision in u decides
if v may execute. Some source lines can span multiple ba-
sic blocks; in these cases, we associate the source line with
the basic block containing its first instruction. The core algo-
rithm assigns indentation levels to basic blocks by calculating
the length of the shortest path to the START node. However,
several cases require special handling. For example:

(1) certain control flow statements (else, finally) do
not have any bytecode instructions associated with them and
therefore cannot be generated by the statement translation
model. However, we can recognize that we need to insert an
else if there is a basic block that is only reachable by jumps
from a unique source line. On the other hand, recognizing ba-
sic blocks that should have finally is not quite as simple, as
the bytecode representation of this control flow structure has
changed significantly across different Python versions. Detec-
tion of this structure usually requires inspection of the CFG
for instructions that affect the block stack, a separate stack
that the Python interpreter used to use to handle exception
handling prior to 3.11. (2) certain control flow statements
(break, continue, return) can break out of several con-
trol structures at once, which creates control dependencies
between every basic block that could lead to the premature
exit and everything after the premature exit within the control
flow structure that would be exited. As an illustrative example,
every decision leading to a deeply nested return will now
have an execution path where every subsequent statement
at the same indentation level may not execute. Because we
only consider the shortest path to START, only the top-level
added dependency affects the indentation calculation, so we
decrease the affected basic block’s indentation by one when
this behavior is detected. (3) some basic blocks do not contain
any source lines, which can be caused by source lines that



span multiple basic blocks, such as Boolean expressions with
short-circuit evaluation. This can yield indentation levels that
are much deeper than the intended value. We address this not
counting basic blocks without any corresponding source line
along the shortest path to the START node, ensuring that each
source line is only ever able to contribute one indentation
level, even when spread across multiple basic blocks.

As the primary mechanical component in PYLINGUAL, a
certain amount of maintenance effort is expected to catch up to
the evolving Python versions. For example, Python 3.11 over-
hauled the bytecode representation of try ... except struc-
tures, which required a follow-up modification on PYLIN-
GUAL’s control flow reconstruction module.

4.5 Code Equivalence Verification

The general program equivalency problem is known to be
undecidable [38], so to verify the results of PYLINGUAL, we
adopt a strict notion of bytecode equivalency that can be effi-
ciently verified. We consider two PYC files to be equivalent
if and only if all reachable instructions in the two PYC files
appear in the same order and have the same arguments. An
instruction 7 in a PYC file is reachable if and only if there
exists a path from the first instruction in the PYC file to i in the
control flow graph for that PYC file. Correct decompilation
produces source code that yields bytecode that is equivalent
to the original bytecode when compiled. While our extremely
strict definition of code equivalence will yield false negatives
for imperfect but semantically equivalent code (e.g., indepen-
dent statements appearing out of order), it will importantly
never result in a false positive. This equivalence metric al-
lows for fully automatic verification of the decompilation
results, which reduces the time cost for reverse engineers and
improves trust in the decompilation system.

5 Top-k Segmentation Search

To address the limitations of the NLP-based segmentation
module, PYLINGUAL performs a local search in the space of
segmentations, guided by the confidence of the segmentation
model. This often enables the recovery of a correct segmenta-
tion of a code object, when the originally predicted segmen-
tation contains errors. We assert that accurately segmenting
bytecode streams regarding their statement boundaries plays
an essential role in achieving accurate decompilation results.

Here, we describe the family of m-deep-top-k search strate-
gies, from which PYLINGUAL’s 2-deep confidence-guided
segmentation search was derived. Any segmentation mecha-
nism will produce, for each disassembled bytecode instruction,
(1) an indication of if the instruction begins a new statement,
and (2) a set of features (e.g., the confidence score from the
corrector model); the sequence of these outputs for a given
code object constitutes a segmentation.

In an m-deep-top-k strategy, we map the segmentation to
a binary string s of length n, where each bit corresponds
to one instruction, and is 1 if the corresponding instruction
begins a new statement. The search then proceeds over a
set of “corrector masks”, which are also binary strings of
length n, where a bit is 1 if the segmentation decision at the
corresponding instruction should be flipped. To generate a
corrected segmentation s with a corrector mask c, we can
simply compute s' = s @ c. The “search distance” m repre-
sents the maximum number of errors that can be corrected
by the search, and is therefore the maximum number of 1s
in the corrector masks that are considered. The flexibility of
m-deep-top-k searching stems from strategy-specific priority
functions, which establish a total ordering over the corrector
masks; in PYLINGUAL’s case, we prioritize exploration in
order of least-confidence, such that the statement boundaries
that the model is unsure about will be altered first. Finally, k
provides a constant upper bound on the number of variants to
search, ensuring that not too much time is wasted searching
low-priority candidates.

Because only binary strings with at most m ones are con-

sidered, the total search space is ) ;. (’Z) =l+n+ @ +
-+ —"_ where n is the number of instructions being seg-
m!(n—m)!

mented. The asymptotically dominant term is for

n!
m!(n—m)!’
which we can show that #lm), < n™. Therefore, the total
search space is O(n™), which is a significant reduction from
the original exponential search space of all length n binary
strings. The key strength of m-deep-top-k searching is that
when the initial segmentation is expected to be close to a
correct segmentation, a low constant m can include a correct
segmentation with high probability in a polynomial slice of
the exponential search space. In our evaluation and online
service, we set m = 2.

6 Statement Corrector Model

The statement translation model (§4.3) struggles with some
subtasks of bytecode to source code translation. Namely: (/)
long statements can exceed the input capacity of the model,
resulting in a loss of information; and (2) lists that must be
aligned from the right side (e.g., default and keyword argu-
ments) pose a structural challenge to the translation model’s
autoregressive decoding scheme. That is, because the model
is generating each token of the translation one-by-one from
left to right, it doesn’t “know”” how long the lists will be when
it needs to decide how to align them, so it will guess based on
common trends. For example, it is very common for function
definitions in classes to start with self followed by default
arguments, so the statement translation model will start out-
putting default argument values after the first argument.

The above limitations are well-known in the NLP com-
munity [39]-[41], and the traditional solution is to train a



corrector model which sees the inputs and outputs of the first
translation pass, then outputs a corrected result. While the
architecture is common practice, the implementation chal-
lenge lies in deciding when a given translation is likely to be
incorrect. Without an effective filter to limit the number of
correct cases sent to the corrector model, the corrector simply
learns to accept the original answer, which is correct most
of the time. We originally explored methods to validate the
correctness of a single bytecode statement translation directly
to decide what to forward to the corrector, but the significant
context-sensitive variety of bytecode that could correspond to
a given source code statement proved to be difficult; we are
only able to validate the correctness of statement translations
at the end of decompilation, once the surrounding context
has been recovered. As an easier and more streamlined al-
ternative, we turned to heuristically determining if a given
bytecode statement would be “difficult” to translate. Heuris-
tically, “difficult” statements are those that: (/) contain type
annotations or default arguments; (2) are comprehensions;
(3) contain four or more function calls, jumps, or sequence
creations; or (4) contain six or more binary operations. With
these rules, we are able to train an effective corrector model,
which we demonstrate in our evaluation (§8.4).

7 Implementation

PYLINGUAL consists of NLP models and mechanical compo-
nents for its training and translation tasks. Written in Python,
the source code spans approximately 5.6K lines, excluding
contributions to an external open-source project. Along with
the datasets and trained models, we will make PyLingual
source code publicly available.

Python bytecode disassembler. Despite bundled disassem-
bler support in Python releases, PYLINGUAL still requires
cross-Python disassembler support due to its design objec-
tive being a generic decompilation framework. PYLINGUAL
has depended on python-xdis [16] for version agnostic dis-
assembler support. Although outside our research scope, we
have collaborated with the project maintainer, contributing
bug reports, new features, and new language release support.

Transformer models. PYLINGUAL extends two transformer-
based models. The bytecode segmentation module uses
Bidirectional Encoder Representations from Transformers
(BERT) [42], an encoder-only language model; our statement
translation module uses a code-oriented TS5 [43] encoder-
decoder language model. Both language models are pre-
trained on large amounts of text data. By fine-tuning these
pre-trained models on task-specific data, they can transfer
knowledge learned from one domain to another, achieving
state-of-the-art results on a range of downstream NLP tasks.
In PYLINGUAL, we leverage this transfer learning technique
to fine-tune generic public code models to perform Python
bytecode segmentation and translation. For each Python ver-

sion, using one Nvidia RTX 4090 GPU (24G memory), we
trained a segmentation model in 8 hours and a statement
model in 20 hours. The model training pipelines were fully
automated using the Huggingface Transformers, Huggingface
Datasets, and PyTorch libraries in 938 lines of Python code.

Training data generation. To train the segmentation and
statement translation models, we must prepare ground-truth
segmented pairs of source code and bytecode. We leverage
the CodeSearchNet dataset [23] and our collection of over
1,000,000 real-world Python source files [24] by randomly
sampling 80,000 files to serve as the training set, compiling
them in the target version, then constructing ground-truth
segmentations from line number information derived from
debugging symbols. However, in Python, one line can con-
tain multiple statements split by semicolons (;), and a single
statement can stretch over multiple lines with the line break
(\) construct. To ensure that one line always maps to one state-
ment, we use Python’s ast module to standardize the source
code prior to compilation, which will remove unnecessary
whitespace, comments, and other irrelevant source-level arti-
facts. Finally, we apply code normalization (§4.1) to ensure
that the data representation during training matches the repre-
sentation that will be used during decompilation. The training
data generation pipeline was fully automated in 955 lines of
Python code.

Mechanical components. Beyond the data-driven NLP com-
ponents, PYLINGUAL integrates mechanical components for
stable and accuracy-critical tasks. We first implemented a
generic PYC manipulation interface in 1,123 lines of Python
code, which is shared by the control flow reconstructor (1,083
lines) and the code equivalence verifier (177 lines). The de-
compiler pipeline that ties all the modules together was writ-
ten in 336 lines of code. A key component of PYLINGUAL’s
scalability is the low engineering effort required to scale
across versions, with only = 400 lines of version-specific
code across the seven Python versions supported at this time.

8 Evaluation

To demonstrate the efficacy of PYLINGUAL, we conducted
a comprehensive set of experiments leveraging our exten-
sive Python datasets. Specifically, we answer the following
research questions:

* RQ1: Does PYLINGUAL accurately decompile Python

binaries? (§8.2)

* RQ2: Does PYLINGUAL help scale Python decompila-

tion across different versions? (§8.2)

* RQ3: What are the benefits of the auxiliary components?

(§8.3, §8.4)

First and foremost, we evaluate PYLINGUAL across differ-
ent Python versions compared to existing Python decompilers.
Then, we examine the accuracy and overhead impacts of top-k
segmentation and the statement corrector model. Finally, we



showcase case studies that illustrate the strengths and weak-
nesses of PYLINGUAL compared to traditional decompilation.
Our evaluations were run on the same server from §7, which
is equipped with an AMD Threadripper 5955WX CPU, 128
GB of RAM, and one Nvidia RTX 4090 GPU.

8.1 Datasets

Given the data-intensive nature of our research, it is critical
to establish extensive datasets from credible sources. Our
datasets originate from three sources:

CodeSearchNet (CSN) is an open-source and community-
verified dataset of Python source files [23]. Originally de-
signed to support code analysis tasks, the Code Search Net
(CSN) dataset is carefully curated by open-source experts
to encompass diverse aspects of the Python language. How-
ever, CSN is relatively small and only captures a static dataset
composition as of its presentation in 2019, which precludes it
from representing source-level language features introduced
in Python 3.9 and beyond.

Python Package Index (PyPI) is the de facto repository
for Python modules, where thousands of developers publish,
update, and maintain their projects daily to share with the
rest of the community. Our autonomous collection framework
follows PyPI to capture the diverse characteristics of real-
world users and reflect new features as they are adopted.

VirusTotal provides Python malware samples that were pack-
aged using open-source packager tools. We collected the
dataset by querying Python-related keywords via VirusTotal’s
API from June to August 2022. In contrast to benign sources,
malicious files only include the PYC binary. The version cov-
erage of the VirusTotal dataset is limited to 3.9 and below
because Python 3.10 was not yet well-adopted at the time of
collection, and 3.11 and 3.12 had not yet been released.

Table 1 shows the basic compositions of datasets, which
we plan to publicize alongside our source code and models.
We notice from Table 1 that the number of instructions in
each file increases dramatically in VirusTotal as compared
to PyPI, and in PyPI as compared to CSN; in §8.2, we will
show how this impacts the segmentation model’s ability to
consume bytecode samples.

Test dataset composition. Throughout our evaluation, we
measure performance metrics against a sample of 2,000
Python source code files from CSN, 3,000 Python source
code files from PyPI, and all available PYC files from our
VirusTotal dataset for the relevant version. The size of the
test set was chosen to balance the comprehensiveness of the
results against the evaluation overhead. Source code files are
compiled to the appropriate version for each evaluation run.

Table 1: Dataset summaries. For the source datasets, instruction
counts were collected from the test sample and averaged across
versions 3.6-3.12.

Dataset Versi Total Training Set  Instructions per File
atase CrSION 4 Files # Files (Mean / Std)
CodeSearchNet source 412,179 40,000 76.0/84.8
PyPI 1,095,180 40,000 929.4/4,221.4
3.6 388 10,188.7 / 32,006.5
VirusTotal 3.7 1,363 3,525.7/67,022.8
) 3.8 2,390 3,883.3/49,071.2
3.9 5,839 3,336.5/97,791.9

8.2 Decompilation Accuracy

Table 2 measures the effectiveness of PYLINGUAL against
other SOTA Python decompilers: Uncompyle6, Decompyle3,
and Pycdc. To provide a comprehensive view of the decom-
pilation landscape, we examine PYC binaries from research-
oriented (CSN), production-oriented (PyPI), and malicious
(VirusTotal) environments. The decompiled source for each
PYC binary falls into one of four categories: (1) it is Equal to
the input binary (§4.5) and was automatically verified; (2) it
has Semantic Errors and could not be verified; (3) it has Syn-
tax Errors and could not be compiled; or (4) the decompiler
produced No Output. The No Output category indicates an
internal error in the decompiler, with causes varying across
different decompiler families. In PYLINGUAL'’s case, these
failures mainly arise from input length limitations in the seg-
mentation model, which can easily be addressed by substi-
tuting a model with a larger input capacity at the expense of
higher resource requirements.

PYLINGUAL produces significantly more correct decom-
pilation results than any of the other Python decompilers.
Even in versions 3.6-3.8, which were previously considered
to be well-supported, PYLINGUAL improves over the best
available traditional decompiler by 13.7% in CSN, 29.4% in
PyPI, and 20.4% in VirusTotal on average. PYLINGUAL also
offers competent support for newer Python versions that were
previously not well-supported; in versions 3.9-3.12, PYLIN-
GUAL improves over the best available traditional decompiler
by 85.0% in CSN, 69.3% in PyPI, and 38.1% in VirusTotal
on average. While PYLINGUAL was able to support Python
3.12 with two weeks of effort, the overall accuracy slightly
dropped compared to previous versions (e.g., *4% in PyPI).
We attribute this marginal decrease to the growing adoption of
optimizations that span across multiple basic blocks, affecting
the control flow reconstructor. We elaborate on our efforts to
support 3.12 in § 8.5.3.

We highlight the sharp drop in decompilation accuracy ex-
perienced by Pycdc in Python 3.11, down to just 3.0% from
17.5% in CSN, and down to 9.5% from 17.1% in VirusTo-
tal. We expected this drop because Python 3.11 completely
overhauled the bytecode specification for exception handling



Table 2: Decompilation accuracy comparison. PYLINGUAL is configured with &k = 10.

PYLINGUAL Uncompyle6 Decompyle3 Pycdc
Dataset Version (Equal / Seg::::u / sg:ﬁ;‘:‘ /No Output)  (Equal / Seg::::“ / sg::t?:‘ /No Output) (Equal / seg:;i::lt Sgrrt;x /No Output)  (Equal / Seg:;l:rnc / s]grri?rx / No Output)
3.6 96.2%/ 2.1%! 0.9%/ 0.9% 85.7%/ 13.8%/ 0.4%/ 0.1% -1-1-1- 21.4%/ 63.0%/ 15.6%/ 0.0%
3.7 95.8%/ 2.5%! 0.9%/ 0.8% 82.5%/ 15.7%/ 0.7%/ 1.1% 85.9%/ 12.9%/ 1.1%/ 0.2% 21.2%/ 63.2%/ 15.6%/ 0.0%
38 96.5%/ 1.9%/ 0.8%/ 0.8% 64.1%/ 17.8%/ 11.6%/ 6.5% 75.8%1 19.0%/ 1.1%/ 4.1% 18.6%/ 63.0%/ 18.4%/ 0.0%
CodeSearchNet 3.9 96.8%/ 1.6%! 0.8%/ 0.9% -1-1-1- -1-1-1- 18.6%/ 69.0%/ 12.4%/ 0.0%
3.10 95.7%/ 2.4%! 1.0%/ 0.9% -/-1-1- -/-1-1- 17.5%/ 71.7%/ 10.8%/ 0.0%
3.11 95.2%/ 2.5%! 1.3%/ 1.0% -/-1-1- -l-1-1- 3.0%/ 84.5%1 12.5%/ 0.0%
3.12 91.3%/ 4.3%/ 3.5%/ 0.9% -1-1-1- -/-1-1- -1-1-1-
3.6 75.4%/ 8.5%1 1.0%/ 9.2% 47.3%/ 48.0%/ 1.6%/ 3.1% -1-1-1- 8.9%/ 39.5%1 51.5%/ 0.1%
3.7 72.7%/ 10.1%/ 8.0%/ 9.2% 40.0%/ 49.1%! 5.6%/ 5.3% 51.0%/ 41.1%/ 6.7%/ 1.2% 8.4%/ 38.0%/ 53.5%/ 0.0%
3.8 74.9%/ 8.4%] 1.6%/ 9.1% 32.1%/ 37.1%/ 17.9%/ 12.9% 36.6%/ 48.9%/ 5.8%/ 8.7% 7.9%/ 35.6%/ 56.6%/ 0.0%
PyPI 3.9 76.7%/ 7.3%/ 6.9%/ 9.1% -/-1-1- -/-1-1- 7.8%/ 41.3%/ 50.9%/ 0.0%
3.10 75.7%! 6.5%! 6.4%/ 11.5% -/-1-1- -/-1-1- 6.5%/ 39.5%/ 54.0%/ 0.0%
3.11 73.9%/ 8.1%/ 8.7%/ 9.3% -/-1-1- -/-1-1- 4.6%/ 43.7%/ 51.6%/ 0.0%
3.12 69.6%/ 7.7%/ 13.1%/ 9.5% -/-1-1- -/-1-1- -/-1-1-
3.6 44.1%/ 4.5%! 6.2%/ 45.2% 28.6%/ 37.6%/ 19.6%/ 14.3% -/-1-1- 15.0%/ 38.5%/ 46.0%/ 0.5%
VirusTotal 3.7 50.0%/ 4.3%/ 5.1%/ 40.6% 28.1%/ 25.1%/ 30.8%/ 16.0% 30.3%/ 26.0%/ 36.5%/ 1.2% 14.2%/ 45.5%1 39.5%/ 0.8%
3.8 50.3%/ 6.4%/ 5.5%/ 37.8% 22.1%/ 12.6%/ 14.6%/ 50.7% 24.3%/ 16.5%/ 14.2%1 44.9% 17.1%/ 39.1%/ 43.8%/ 0.0%
3.9 47.6%/ 3.9%1 1.7%/ 40.8% -l-1-1- -/-1-1- 9.5%/ 49.2%/ 41.4%/ 0.0%

to support “zero-cost exceptions”, which only incur perfor-
mance costs if an exception is triggered. A specialized table
was added to hold exception jump targets, where they had
previously been presented in bytecode instruction arguments.
PYLINGUAL was able to seamlessly overcome this major
specification change with minimal engineering effort by an-
notating instructions associated with exception table entries
during code normalization, from which the NLP components
were able to derive the necessary information for segmenta-
tion and translation. Currently, Pycdc has not received updates
to support Python 3.12.
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Figure 5: Distribution of largest code object size in each PYC file.

We notice that the share of binaries that result in no out-
put from PYLINGUAL grows from 1% in CSN, to *9% in
PyPI, up to *40% in VirusTotal. The predominant cause of
these failures is the size limitation of the segmentation model,
which can only accept up to 512 tokens, which corresponds
to roughly 400~430 instructions. In Figure 5, we show the
distribution of instruction counts of the largest code object in
each file in the test set. We observe that large classes are com-

mon in production code from PyPI, and that malware authors
frequently place their entire payload logic in one large code
object. Common source-level obfuscation patterns, which we
will discuss more in §8.5, create large sequences of simple
bytecode that challenge the segmentation model’s input size
limitation. Despite this, PYLINGUAL still produces more cor-
rect decompilations on the VirusTotal dataset than any other
existing Python decompiler.

8.3 Top-k Segmentation Improvements
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Figure 6: Decompilation accuracy provided by segmentation search,
aggregated across versions 3.6-3.12. Standard error around the mean
is highlighted.

In Figure 6, we show the impact of configuring the seg-
mentation search limit k. Across all versions and datasets,
we see an initial jump in decompilation accuracy, followed
by a period of diminishing returns. Typically, the inclusion
of the segmentation search will improve the overall results
by 1-2% when k > 10, with most of the improvement occur-



Segmentation Top-k Runtime Overhead

Q 1254 — CodeSearchNet
[T
5 PyPI
= 10s | — VirusTotal
£
Z 8s
=
©
s 657
5
_—

8 4s+ E—
8 /.—"".'——./.
=3 R
$ 2s 1 o—" T * .
= — *—0 o

0 20 a0 60 80 100

# Candidate Segmentations (k)

Figure 7: Extra computation time incurred by top-k segmentation
search, measured against Python 3.9.

ing within the first 10 candidates. Figure 7 shows the runtime
overhead tradeoff, where increasing k results in approximately
linear increases in runtime overhead. Notice that exploring
each segmentation candidate only takes a small fraction of
the time needed to produce the initial decompilation result;
only the bytecode statements that were modified by the search
will need to be retranslated. Further, because decompilation
completes as soon as a correct result is confirmed, the seg-
mentation search limit k£ parameterizes how long the user will
need to wait for a negative result; setting a k that is higher
than needed to successfully decompile a given PYC binary
incurs no additional time cost on that binary. From Figure 7,
we see that increasing k incurs higher costs in PyPI than in
CSN or VirusTotal because the top-k search exits early in the
event of an equal or no output result. PyPI has the largest
share of files with syntactic and semantic errors, so it has the
most files who will bear an increased decompilation cost due
to increasing k.

8.4 Corrector Model Improvements
Translation Corrector Accuracy Contribution
CodeSearchNet +1.2%
PYPI +6.5%
VirusTotal +1.1%

+0% +1% +2% +3% +4% +5% +6% +7% +8%
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Figure 8: Decompilation accuracy provided by the translation cor-
rector models, aggregated across versions 3.6-3.12.

Figure 8 shows the benefit of adding a corrector model to
the statement translation module. We see that the benefit is
much larger in PyPI, contributing ~6.5% to the success rate,
as compared to =1.1% in the other datasets. The production
code seen in the PyPI dataset often involves long function
definitions, lists, and complex expressions, which benefit sig-

nificantly from a second translation pass. Comparatively, the
code we see from the CSN dataset is relatively straightfor-
ward to comprehend. In VirusTotal, files containing complex
statements also tend to be large enough to overwhelm the
segmentation module, limiting the effectiveness of the cor-
rector model. Adding the corrector model to the decompiler
pipeline adds a one-time cost of %10 hours for translating the
training set and training the corrector model, and increases
the runtime overhead by approximately 20%. Even with this
additional overhead, PYLINGUAL can typically process each
binary in less than 10 seconds, so it is affordable in practice.

8.5 Case Studies

Here, we compare the strengths and weaknesses of PYLIN-
GUAL to existing Python decompilers by contrasting their
results on illustrative bytecode examples.

8.5.1 Complex Conditional Expressions

Across our datasets, we encountered cases of complex condi-
tional statements that can contain multiple expressions and
statements joined together. This is usually a quite difficult task
to approach for current decompilers. Our segmentation model
is able to accurately decide which conditional components
should be joined on one line or nested, and our statement
model is capable of translating these complex boolean expres-
sions into equivalent source code. An example of this can
be found in our VirusTotal Dataset where we encountered a
file (Figure 9) with nested conditionals and multiple state-
ments. As this sample is a Python 3.9 bytecode, decompyle3
and Uncompyle6, which only support versions 3.8 and below,
produced no result. However, pycdc clearly demonstrated a
failure to correctly segment the boolean expression, splitting
off the last e [2]>e [3] and incorrectly grouping the terms of
the expression for translation.

(S

# pycdc
def is_pma(matrix):
for line in matrix:
for e in line:
if not (e[3] != 255 or e[0] > e[3]1) and e[1] > e[3]:
if e[2] > e[3]:
return False
continue
return True

e s

11 |# PylLingual
12 |def is_pma(matrix):

13 for line in matrix:

14 for e in line:

15 if e[3] '= 255 and \

16 (e[0] > e[3] or e[1] > e[3] or e[2] > e[3]):
17 return False

18 else:

19 return True

Figure 9: VirusTotal 3.9 sample with complex condition (§12.2).

A similar sample from our CSN dataset for Python 3.7
shows how PYLINGUAL outperforms other state-of-the-art
decompilers in cases with complex conditionals and control



flow (Figure 10). Comparing the results of the existing decom-
pilers with those of PYLINGUAL, it is clear that traditional
pattern matching approaches are inadequate for managing
complicated conditional expressions. Where existing decom-
pilers consistently failed to correctly place the final return
statement, PYLINGUAL not only reconstructs the original con-
trol flow, but also correctly places all the conditional pieces
on the same line.

PYLINGUAL’s efficacy in reconstructing complex condi-
tional statements strongly validates the design decision to ded-
icate a segmentation module for the bytecode segmentation,
which inherently carries crucial control flow semantics. This
focused approach not only enhances the precision in identify-
ing bytecode statement boundaries but also highlights subtle,
essential control flow semantics. Even if the segmentation
model produced inaccurate segmentations for the examples
above, PYLINGUAL’s top-k segmentations design provides a
robust fallback, adding an extra layer of error protection.

1|# original:

2 |def d_cost(chl, ch2):

3 if chl '= ch2 and (chl == 'H' or chl = 'W'}:
4 return group_cost

return r_cost(chl, ch2)

# decompyle3:
8 |def d_cost(chl, ch2):
9 if chl '= ch2:

10 if chl == 'H' or chl == "W":
11 return group_cost

12 return r_cost(chl, ch2)

13

14 | # pycdc:

15 |def d_cost(chl = None, ch2 = None}:
16 if chl '= ch2:

17 if chl == 'H' or chl = "W':
18 return group_cost

19 return None(chl, ch2)

20

21 |# PyLingual:

22 |def d_cost(chl, ch2}:

23 if chl '= ch2 and (chl == 'H' or chl = 'W'}:
24 return group_cost

2 else:
26 return r_cost(chl, ch2)

Figure 10: CSN 3.7 sample with complex conditional expression.

8.5.2 Very Long but Simple Code Objects

Due to its inclusion of NLP models, PYLINGUAL encounters
specific constraints, including a limit on the number of tokens
each code object can handle. In Figure 11, we illustrate a
VirusTotal 3.9 sample that continuously appends portions of
an encoded string to a variable. While the bytecode is not
complex, it is over 1,700 instructions long, which overwhelms
the segmentation model’s input capacity. Across our datasets,
we have found individual code objects with over 1,000,000
instructions. Traditional decompilers are better able to iterate
over long bytecode sequences when there is not much control
flow complexity. We further discuss the current limitations of
PYLINGUAL and future research directions to mitigate those
leveraging new advances in NLP [39] in §10.

11

84 LOAD_NAME (x)
86 LOAD_CONST (*dXNlciA9IG")
68 INPLACE_ADD

(x)

90 STORE_NAME
8 LOAD_NAME (x)
EXTENDED_ARG 256)
LOAD_CONST ("o=")
4 INPLACE_ADD
& STORE_NAME (x)

x += "dXNLciA9IG"

X += "p="

(a) Simplified Bytecode (b) Corresponding Source

Figure 11: Virustotal Python 3.9 PYC sample. This sample is not
complex, but has over 1,700 instructions (§12.2).

8.5.3 Supporting New Python 3.12

Supporting new Python versions in PYLINGUAL involves
three key tasks: (/) integrating a version-agnostic disassem-
bler, (2) consistently masking variables and constants, and (3)
updating the control flow reconstruction module. For Python
3.12, we focused our efforts on the control flow module, as
the open-source disassembler was able to be extended, and
the masking process needed no updates. The entire effort was
accomplished by a single junior engineer with only 12 hours
of work and =200 lines of code changes.

Before Python 3.12, instruction offsets correponded to
source line positions, simplifying source reconstruction. How-
ever, Python 3.12 now places exception-handling code at the
end of the code object, necessitating the proper relocation of
except blocks in the reconstructed source. Additionally, we
manually updated finally statement insertion, as the trans-
lation model does not generate them, as discussed in §4.4.
The update extends the Python 3.11 major update, which
introduced a specialized table for handling exceptions more
efficiently [44], encompassing various constructs like except,
finally, and with. While Python 3.12 retains the exception
table, the heuristics used to determine the type of each table
entry in 3.11 no longer work, requiring new heuristics to be
created.

We also made several minor adjustments. In version 3.12,
Python introduced the RETURN_CONST instruction, requiring
us to update the control flow reconstructor to check for this
new instruction instead of just RETURN_VALUE. Additionally,
we encountered and addressed a problem where if statements
at the end of for loops became inverted, causing the control
flow reconstructor to mislabel the if body as an else.

9 Related Work

The challenges faced in traditional binary decompilation re-
search differ significantly from those faced by PYLINGUAL.
Traditional binaries are characterized by their stable Abstract
Binary Interface (ABI) and Instruction Set Architectures
(ISAs), as well as aggressive compiler toolchain optimiza-
tions that strip away critical information for source recovery.
In contrast, Python binaries are characterized by constantly



evolving bytecode specifications and rapid, unpredictable de-
ployment of new language features, but suffer substantially
less information loss from optimizations. The constant evo-
lution of Python and other High-level Dynamic Languages
(HDLs) demands significant maintenance effort for their re-
verse engineering infrastructure.

9.1 Traditional Binary Decompilation

Traditional binary analysis is a well-established research field
due to high demand from reverse engineers who want to
understand binaries without having access to the source and
from security analysts who need to analyze malware payloads.
The field has been extensively explored by both industry and
academia [45]-[48]. Despite the availability of mature, off-
the-shelf tools, numerous research problems related to push-
ing the limits of decompilation remain.

Traditional decompilation. Since Cifuentes et al. [49] first
pioneered the field, decompilation research has evolved to ad-
dress various practical and theoretical challenges, which can
be primarily summarized into two sub-problems: (/) state-
ment translation to accurately restore type information and
data dependencies [50], and (2) structural analysis to accu-
rately identify code blocks and restore control dependencies
among them [49], [S1]-[53]. Structural analysis has more
impact on the performance and usability of a decompiler, so
it has been the primary focus of recent research [51]-[53].

Neural decompilation. Recent advances in neural translation
have sparked interest in their use for binary analysis and de-
compilation. Although large public code datasets meet the
data demands of NLP approaches, decompilation demands
strict syntax compliance and semantic accuracy, posing new
challenges to natural language translation and complicating
the generation of trustworthy results.

Shin et al. [54] proposed one of the first ML-assisted bi-
nary analyses. They built a multi-layer RNN network that
consumes one byte at a time to predict a byte sequence that
maps to the function boundary. Katz et al. [55] first proposed
an RNN-based model similar to the those used for natural
language translations. However, their work employed a naive
seq2seq model that struggled to identify PL-specific features
such as function and statement boundaries, number and type
of instruction operands, etc. CODA [56] implements a type-
aware encoder and AST decoder to preserve important code
structures. They also implemented an Error Correction post-
processor to improve the prediction accuracies. Neutron [57]
uses long-short-term-memory (LSTM) models to segment
and translate unoptimized assembly into C code. Similar to
CODA, Neutron relies heavily on mechanical correction of
common model translation errors.
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9.2 Reversing and Decompilation for HDLs

The rising popularity of HDLs such as Ruby, Lua, and Golang,
is driving demand for portable packaging and deployment to
support the highly heterogeneous and fragmented IoT (In-
ternet of Things) and CPS (Cyber-Physical Systems) com-
puting sectors. In response, developers and malware authors
alike have minimized external dependencies with architecture-
neutral formats, standardized modules, and adaptable run-
time components [1], [58], [59]. Compared to regular bi-
naries directly compiled from low-level system languages
(i.e., assembly and C), HDL families largely lack reversing
support. When dealing with languages that incorporate an
intermediate bytecode representation for their compiled code
(e.g., PYC files for Python and CIL files for.NET framework),
reverse engineers often depend on incomplete or inaccurate
solutions for analyzing malicious binaries in this intermediate
form.

Python decompilers. uncompyle6 [17] and
decompyle3  [18] are the two most popular and
well-supported  decompilers  for Python  binaries.

uncompyle6 evolved from early attempts at creating
a decompiler that leveraged the same strategies as com-
pilers. Because bytecode is ambiguous without context,
uncompyle6 uses an Earley parser [60] to generate many
possible parallel parse trees when decompiling bytecode.
decompyle3 is a reworking of uncompyle6 to improve its
overall maintainability, focusing on control flow support for
Python 3.7 and 3.8.

Since decompyle3 first released in 2021 as a fork of the
previous uncompyle6 project, over 10,000 lines of code have
been added to improve performance on Python 3.7 and 3.8,
with the most recent release in 2024 still providing no pub-
lic support to Python 3.9 or later, although the maintainer
has mentioned private initial developments to support Python
3.9 and 3.10. The foundational work to extend support from
Python 3.7 to 3.8 goes even further back to 2019 in the
uncompyle6 project; nearly 30,000 lines of code have since
been added to provide maintenance and improvements to the
coverage of Python 3.8 and below.

pycdc [26] is a less popular Python decompiler due to
its limited coverage of language features. However, pycdc
does provide limited support to Python 3.9 and above, which
decompyle3 does not. pycdc attempts to track control flow
structures using a stack, similar to how the Python interpreter,
and matches bytecode statements against a known list of
patterns. While pycdc has undergone a much more modest
= 4,000 lines of code modification to support Python 3.9 and
3.10, the accuracy of the decompilation results is lacking. In
§8, we saw that pycdc was unable to decompile even 25 %
of PYC binaries for any of the Python versions we tested.
Although pycdc technically supports Python 3.11, it was
unable to adapt to the exception handling overhaul, and its
already poor accuracy suffered immensely as a result.



Decompilers for other HDLs. Soot [61], designed by Vallée-
Rai et al., provides a framework to decompile binaries written
in Java and Dalvik bytecodes. The Soot framework is actively
maintained by the open-source community to stay up-to-date
with Java bytecode specification changes. Furthermore, the
framework supports code reassembly to instrument additional
functionalities. Several stable decompilers for the . Net frame-
work [62], [63] are also actively maintained. Although niche
and thus not actively maintained, decompilers also exist for
other HDL families such as Ruby and Lua [64], [65]. Al-
though malware written using these HDLs exists, the commu-
nity lacks reliable support for these languages. Demands for
systematic approaches to fix failures and reduce maintenance
efforts are also high for these decompilers.

10 Discussion and Future Works

Limitations of NLP models. PYLINGUAL faces several chal-
lenges due to its extension of NLP techniques. The segmenta-
tion models’ capacity is limited, struggling with exceptionally
lengthy input bytecode. The capacity of the statement transla-
tion model, defined by its model parameters, thus ties directly
to GPU memory size. While we demonstrate that modern
transformer models support a large enough context to process
most real-world Python samples, it is desirable for a decom-
piler to gracefully handle even arbitrarily long statements,
functions, and files. The context limitation problem has been
and continues to be a subject of intense focus in the NLP
community, and potential solutions can be adopted from the
NLP literature.

Beyond mechanical solutions that decompose or otherwise
simplify the inputs to the segmentation and statement transla-
tion models [30], NLP researchers have been exploring trans-
former architectures that leverage sparse attention to handle
longer sequences [66], [67]. Because only control flow state-
ments can induce long-range dependencies in segmentation,
future work may improve the coverage of neural decompilers
by incorporating guided sparse attention into the segmenta-
tion model. Combined with a sliding window approach, new
model architectures are a promising direction for processing
long sequences of code.

Data lag for new language features. For models to effec-
tively learn to segment and translate a given language struc-
ture, that structure must be adequately present in the training
data. Although we have constructed a continuously evolving
dataset using real-world source code from PyPlI, the represen-
tation of new language features in the dataset is dependent
on the speed of user adoption of those features. According to
data from the JetBrains Python developers surveys, Python
3.9 adoption was only 12% in 2020 but rose to 35% in 2021,
until falling to 23% in 2022 due to Python 3.10’s explosive
45% adoption rate. More research is needed on the time it
takes for the new language features in each version to gain
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sufficient representation in datasets collected from real-world
deployment. Future works may explore meta-learning, super-
sampling, and artificial data generation as mechanisms to
reduce the reliance on user adoption of new features to train
effective models.

Adversarial considerations. Adversaries could exploit
PYLINGUAL’s limitations to disrupt decompilation by craft-
ing malware payloads with exceptionally long statements or
employing rare language features. While we can enhance
PYLINGUAL’s performance by leveraging ongoing advance-
ments in NLP modelling, including improving the corrector
model to handle challenging statements, the system’s effi-
cacy fundamentally relies on the external components of NLP
models, which largely remain black boxes. This dependency
complicates the tasks of tracing and understanding transla-
tion errors. However, through accountable and detailed error
reporting, PyLingual can pinpoint errors, reducing the effort
security analysts must expend in reversing PYC payloads.

LLMs for Decompilation. Recently, Large Language Models
(LLMs) have revolutionized various sectors. However, even
LLMs will eventually start to produce inaccurate predictions
when the input is long. To counter these errors, PYLINGUAL
introduces a unique architecture that establishes clear inter-
action boundaries, allowing us to identify and improve un-
derperforming components. Future work may explore the
effectiveness of an all-encompassing language model for de-
compilation, utilizing extensive accumulated datasets. Once
established, it will be crucial to study how swiftly this model
can handle complex changes in language specification. We
caution, however, that using an end-to-end black box will pose
substantial challenges in debugging and development.

Automation of control flow reconstruction. To scale across
language versions, PYLINGUAL relies on three components
that require manual maintenance: (1) a version-agnostic
Python disassembler [16], (2) code normalization to mask
variable names and constant values, and (3) version-specific
control flow reconstruction. While components (1) and (2)
demand minimal engineering efforts, owing to an open-source
project for the version-agnostic Python disassembler and the
relatively simple code normalization process, the control flow
reconstruction has required significant work and greatly influ-
ences decompilation accuracy.

The growing adoption of bytecode-level optimizations, of-
ten extending beyond basic block boundaries, has heightened
the challenges of creating a universal control flow recon-
struction module. Expecting more aggressive optimizations
in future versions, we will develop a GNN (Graph Neural
Network)-based strategy to automatically adapt to control
flow dependencies across various Python releases.

Applying PYLINGUAL to other languages. The direction
of our research hinges on our ability to extend PYC decompi-
lation to other programming languages. While we prioritize
Python binaries, it is essential to provide reversing support



to other HDLs. From our experience with Python, there are
certain criteria that indicate that a language will benefit sig-
nifcantly from PYLINGUAL’s analysis. These include: (/) A
modular code object structure, (2) A rich source of datasets
similar to Python’s PyPI, (3) Availability of auxiliary or debug-
ging information, and (4) Language-specific optimizations.
Given these considerations, we’re exploring HDLs with ex-
ecution models similar to Python, such as Lua and Ruby, as
prospective candidates for PYLINGUAL’s analysis.

11 Conclusion

PYLINGUAL’s innovative design balances theoretical PL prin-
ciples with data-driven statistical approximations. The rigor-
ous code equivalence requirements of perfect decompilation
address the inability of NLP models to deterministically com-
ply with strict syntactic and semantic accuracy requirements
in high-stakes domains. Further, for outputs that are not prov-
ably correct, PYLINGUAL automatically localizes semantic
errors to aid reverse engineers. PYLINGUAL represents the
first research effort to address translation instability due to
weakly-defined binary interfaces and continuously evolving
language versions, and impacts real-world reverse engineers
by scaling Python decompilation support across versions.

Evaluated against an extensive collection of real-world
datasets, PYLINGUAL achieved a high perfect decompilation
rate of 77% on average across Python 3.6 - 3.12, marking an
average improvement of 47% over SOTA Python decompil-
ers [17], [18], [26]. To promote progress in this research field,
we will release associated research artifacts, encompassing
source code, benign and malicious sample datasets, and estab-
lished models, and we have launched PYLINGUAL as a freely
available online decompilation service 3,
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12 Appendix

12.1 Semantic Error Localization

When PYLINGUAL decompiles a PYC sample, and our strict
equivalency metric §4.5 indicates that incorrect semantics
were generated, PYLINGUAL is able to report strict and lo-
calized information about where it has failed. This infor-
mation gives a reverse engineer using PYLINGUAL a spe-
cific source line number and bytecode instruction offset to
focus additional reversing and debugging. In Figure 12 we
demonstrate an example of this error localization on a Virus-
Total 3.9 sample where PYLINGUAL yielded source code
with semantic errors. Although the problem is clear when
comparing the incorrect source line to the correct manually
decompiled source line, the difference in the bytecode is
would be difficult to notice without an automatic error de-
tection mechanism. The arguments to BUILD_LIST at offset
434 and CALL_FUNCTION_KW at offset 440 were swapped,
and the “help” item was removed from the LOAD_CONST at
offset 438. At the source level, this is represented by the
choices list being too long, which misaligned the arguments to
the run_parser.add_argument call. PYLINGUAL’s code
equivalency verification was able to identify and locate the
exact instructions affected by the semantic decompilation
error.
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#+*<module>: Failure detected at line number 90 and instruction offset 434: Different bytecode
<module=.print_info: Success: Equal
<module>.configure_logging: Success: Equal

(a) Sample Equivalence Report.

run_parser.add_argument('-11', dest='log_level', type=int,
default=[logging.WARNING, logging.DEBUG
logging.INFO, logging.WARNING
logging.ERROR, logging.CRITICAL]
choices='Log level. DEBUG - 18, INFO - 20,%\
WARNING - 308, ERROR - 40,\
CRITICAL - 50. Default is WARNING.')

(b) Line 90 of PYLINGUAL’s decompilation of this sample.

run_parser.add_argument('-11', dest='log level', type=int,
default=logging.WARNING,
choices=[logging.DEBUG, logging.INFO,
logging.WARNING, logging.ERROR,
logging.CRITICAL],
help='Log level. DEBUG - 18,3\
INFO - 28, WARNING - 30,\
ERROR - 40, CRITICAL - 50.
Default is WARNING. ')

\

(c) Manual decompilation of line 90 of this sample.

(run_parser) 400 LOAD_NAVE (run_parser)
(add_argunent) 402 LOADZATTR «

add_arqunent)

0ADTNAME
116 LOADATTR
518 LOADNAME
120 LOADATTR
522 LOAD_NAME

1 LOW ATTR
26 LOADNAME
128 LOADATTR
430 LOADNAME

LOAD_ATTR
BUILD, LIsT

LoADh

A
TTR (INFO)

(Logging)
(CRITICAL)

3 Lono_consT 6 tomocowt

138 LOAD_CONST
20 CALLFUNCTION Ko
POP_T0P

5 LOAD_CONST
440 CALLZFUNCTION_KW
422 POP_ToP

(d) Original PYC disassembly. (e) Disassembly of decompiled
source, then recompiled.

(f) Virustotal 3.9 PYC disassembly.

Figure 12: Local error analysis on a Virustotal 3.9 sample (§12.2).

12.2 Virustotal 3.9 Sample Hashes
Figure 9 Sample Sha256 hash:

c834a279f9132e1d5dc156938£07c2de3238a714a4d153eabc500£d069dd95d4

Figure 11 Sample Sha256 hash:
05d0b4ddac8d0lac25beaf2c6alcflefd47c48acbfb4addb0d82dd8c261758f6

Figure 12 Sample Sha256 hash:

066281026bb847c68c748782308f8dab62dd31818a5443£0db5d51793f2af4b0
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