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Abstract

The increasing prevalence of Python has spurred interest in decom-
piling Python PYC bytecode. This work presents the first large-scale
study on human-assisted Python decompilation in the wild, leverag-
ing extensive data from pylingual.io, spanning 181,646 PYC binaries,
9,003 user-submitted patches, and 393 accuracy-verified patches.
We investigate how reverse engineers respond to inaccurate de-
compilation and identify factors influencing their efforts to achieve
accurate decompilation. We complement this unprecedented obser-
vational data with a controlled user study that isolates the technical
difficulty of patching imperfect Python decompilations.

By contrasting real-world patching behavior with that of the
controlled setting, we discover that reversers’ decision to repair
a decompilation result is more strongly driven by the semantic
content of the program (e.g., malware binaries or malicious tools)
than by the technical difficulty of the patch. That is, a reverser’s
motivation is more important than their expertise.

Our study reveals common patterns observed in the patching pro-
cess, including how users approached the patching task, the types
of errors they encountered, and the strategies they employed to
resolve them. We also examine the strengths and limitations of assis-
tive tools in the pursuit of perfect decompilation. Our findings offer
unique insights into the practical dynamics of human-decompiler
interaction, providing actionable recommendations for integrating
human intelligence into the decompilation workflow and demon-
strating the research potential of reliable decompilation accuracy
verification.
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1 Introduction

Many malware payloads and benign software applications are
now written and compiled directly from source code developed in
High-level Dynamic Languages (HDLs). This practice is becoming
increasingly common as it saves significant development time by
leveraging well-established language ecosystems. Among various
HDLs, Python is the most popular among both software developers
and malware authors for its versatility and ease of use [1-13]. Con-
sequently, there has been growing interest in research focused on
reversing and decompiling software binaries created from Python
source code. This momentum is reflected in several research pro-
posals [14, 15] and the emergence of open-source projects [16-20]
implementing decompilers for PYC binaries.

Of these recent endeavors, PYLINGUAL [15] stands out as the
most effective Python decompiler for modern Python versions (3.6
and onward). PYLINGUAL has been able to keep up with Python’s
rapid development cycle by incorporating Natural Language Pro-
cessing (NLP) models into its decompilation pipeline. However,
these models are prone to producing unpredictable decompilation
failure modes. PYLINGUAL employs perfect decompilation, a strict
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post-hoc decompilation accuracy verification [21, 22]. When the de-
compilation result is not immediately accurate, PYLINGUAL exposes
a web-based IDE patching interface, enabling reversers to apply
human intelligence and expertise to localize and repair decompila-
tion inaccuracies. Between its initial launch as a public service in
November 2023 and this paper’s writing in April 2025, PYLINGUAL
has become the de facto framework for modern PYC decompila-
tion, processing 181,646 PYC binaries, among which 1,977 (= 1%)
are identified as malicious by VirusTotal. It also gathered 9,003
user-submitted patches, including 393 verifiably accurate patches.
Between the time of writing and publication, PYLINGUAL has pro-
cessed 142,399 additional PYCs, 16,727 additional user patches, and
565 additional verified patches, which are not included in the study.

The goal of this study is to understand both why reverse engi-
neers choose to patch incomplete decompilation outputs and how
they approach patching incomplete decompilation outputs to fully
recover the program logic. By doing so, we can derive valuable
insights to improve PYC reversing and benefit a broader class of
decompilation studies. Paying close attention to ethical guidelines
and maintaining contact with UTD’s legal department and Institu-
tional Review Board (IRB)I, our study observes, but does not release,
PYC binaries and user-submitted patches uploaded to pylingual.io.
Leveraging this extensive dataset of PYC binaries and source-level
patches that users submitted to the PYLINGUAL web service, we
conduct two analyses to study reverse engineers’ responses to in-
complete decompilation results. First, we perform an uncontrolled
observational study of PYC samples and patches submitted to the
PYLINGUAL web service by anonymous Internet users. Second, build-
ing on the observational study, we design and conduct a controlled
user study to observe how cybersecurity undergraduates approach
patching 40 inaccurately decompiled PYC malware samples, fol-
lowed by an exit survey to ask participants’ opinions on the PYC
patching process and its effectiveness in understanding malware
semantics.

With these, we specifically aim to address the following research
questions: (1) are users inclined to fix incomplete decompilation out-
puts? If so, does the type of program affect their motivation? To
explore this, we analyze the types of programs that users are more
likely to attempt to fix when faced with incomplete decompilation
results. We categorize the PYC binaries based on their functional-
ity, complexity, and usage context. Our analysis reveals that users
are most motivated to address decompilation inaccuracies in un-
obfuscated malware and its related utilities. (2) how difficult is it
to repair incomplete decompilations? In particular, we investigate
whether the difficulty of patching incomplete decompilation results
presents a significant obstacle. For this, our study compares two
sets of user interactions: those from in-class participants and those
from users in the wild. Our findings reveal a clear discrepancy in
fixing even the simplest challenges with minimal bytecode differ-
ences. Most participants in the classroom study could easily resolve
these challenge with minimal effort, whereas online users rarely
even attempted to repair them. This discrepancy underscores that
the difficulty of patching is not a major barrier preventing users
from attempting to fix erroneous decompilations. (3) how can the
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design of automatic decompilers be improved using perfect decompi-
lation? For this, we meticulously followed and analyzed the patch
history of participants participated in controlled study, identifying
patterns and practices commonly observed among successful patch-
ers. Based on these observations, we provide several actionable
recommendations for effective PYC reversing and patching tasks.

Through our user study, we investigate how human-assisted
Python decompilation improves accuracy in practice. Furthermore,
we examine efficient and effective methods for integrating human
intelligence into the overall process. By analyzing a novel dataset
collected from a production-grade decompilation framework, our
research aims to establish a robust knowledge base for human intel-
ligence, strengthening the feedback loop and further enhancing the
accuracy and performance of automatic decompilation systems and
their user interfaces. In summary, our study delivers the following
contributions:

e Human-in-the-loop decompilation in the wild: Our
study is the first to observe and analyze how reversers en-
gage with perfect decompilation-driven patching interfaces
in an uncontrolled setting, providing an unprecedented look
into the motivations of real reverser engineers.

e Patching difficulty and effort estimation: The study ex-
amines how reverse engineers repair incomplete decompila-
tions, showing that creating accurate patches to inaccurate
PYC decompilation results is a practical goal with a moderate
amount of effort and knowledge.

e Comprehensive study on real-world dataset: Through
both observational and controlled studies of PYC decompila-
tion and user-submitted patches, the study provides valuable
insights in improving automatic decompilers and their inter-
actions with users.

To benefit the research community, we publish the PYC chal-
lenges and exit survey from our in-class controlled study. 2

2 Python Decompilation

Python bytecode is organized as a tree of “code objects”, each of
which correspond to one function or class. Several language con-
structs such as list comprehensions and lambda expressions are
implemented as anonymous code objects. These code objects con-
sist of bytecode instructions, “semantically important” metadata,
and “debugging” metadata. Semantically important metadata pri-
marily includes tables for constants and variable symbols, as well
as flags used by the interpreter. Debugging metadata includes line
number information, the source file name, and the name of the code
object, which support error reporting and tracebacks.

Control flow in Python can be categorized into four main types:
(1) jumps, (2) function calls, (3) return statements, and (4) exceptions.
Jump targets in Python are statically determined and cannot cross
the boundaries of code objects. In contrast, function call targets are
resolved at runtime, allowing for the dynamic reassignment of func-
tion symbols. Modeling Python’s exception handling structures
requires version-specific logic due to substantial changes in recent
years. In summary, control flow that is dynamic in the bytecode is
also dynamic in the source code.

zhttps:// github.com/syssec-utd/CCS25-WalkingTheLastMile-Supplementary
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While PYC binaries carry more information within cleanly iden-
tified code object boundaries, the most significant challenge in
Python decompilation lies in the instability of the Python bytecode
specification. Since its initial 1991 release, it has rapidly deployed
feature updates, bug fixes, and performance improvements. Each
year, minor version releases introduce significant language features
and substantial changes to the bytecode representation [23], includ-
ing the addition, deletion, and modification of instruction opcodes.
Beyond changes to the opcode definitions, each version introduces
insufficiently documented changes to code generation, which fur-
ther increases the maintenance effort for Python decompilers.

2.1 PyLincuaL Overview

To address these challenges, PYLINGUAL integrates NLP-models
with programming language components to decompile PYC bina-
ries, supporting evolving Python versions with minimal human
maintenance. The PYLINGUAL framework consists of three compo-
nents: (1) bytecode segmentation, (2) statement translation, and
(3) control flow reconstruction. Lastly, perfect decompilation veri-
fies whether the decompiled code is semantically equivalent to the
original bytecode.

Bytecode segmentation. The bytecode segmenter uses a BERT
model [24] to divide bytecode into independently digestible seg-
ments called “bytecode statements”. These statements correspond
to Python source code statements, facilitating accurate translation
in later stages. Correct segmentation is critical for accurate decom-
pilation because it determines the association between bytecode
instructions and source code statements.

Statement translation. The statement translation module is re-
sponsible for converting bytecode segments into Python source
code statements. Each statement is translated independently by a
CodeT5 transformer [25, 26], and depends on accurate segmenta-
tion. Because statements can grow arbitrarily long and complex,
the translation model’s fixed 512-token context window can be
overwhelmed, which results in statement-level decompilation fail-
ures. The canonical example is long dictionary definitions being
truncated, despite the simple code contained in the statement.

Control flow reconstruction. After translating the individual
statements, the control flow reconstruction module combines them
into a coherent Python program that attempts to reflect the original
control flow in the bytecode. The control flow reconstruction pro-
cess relies heavily on heuristics, which may fail in complex control
flow cases. Notably, the control flow reconstructor often struggles
when overlapping control structures coincide with control state-
ments that break out of multiple layers of control structures at
once.
Equivalence verification with perfect decompilation. The fi-
nal stage, code equivalence verification, confirms the accuracy of
the decompilation process. This step uses a differential testing
approach [27] by recompiling the decompiled source code and com-
paring it with the original bytecode to verify exact equivalence.
By confirming that both the bytecode instructions and important
metadata, like exception tables, match perfectly, a successful perfect
decompilation test guarantees the correctness of the decompiled
code. This verification process is strict, ensuring no false positives —
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Figure 1: PYLINGUAL patching process. PYLINGUAL first decompiles
user-uploaded PYC to be verified by perfect decompilation. In cases
for syntactic and semantic errors, users can work on Web IDE to fix
errors and submit patches.

Yes
Equivalent?

imperfect but semantically equivalent code might fail this check, but
it prevents any incorrect decompilation from being falsely validated.

Because the perfect decompilation test checks instruction-level
equivalence, it indicates where in the bytecode differences were
detected, similar to a simple instruction-diff. This information gives
reverse engineers a specific source line number and bytecode in-
struction offset to focus additional reversing efforts.

Algorithm 1 Perfect Decompilation Workflow

1: Input: Python bytecode file PYC
2: Output: Perfectly decompiled Python source file PY’

3: function DEcOMPILEANDPATCH(PYC)
4 PY' « Decompile(PYC) > Potentially erroneous

5 loop D> Verification Loop.
6 if PY' contains syntax errors then
7 Notify user of syntax errors
8 User modifies PY to fix syntax errors
9 Continue loop
10: end if
11: PYC' « Compile(PY")
12: if PYC' is not strictly equivalent to PYC then
13: Notify user of semantic errors
14: User modifies PY" to fix semantic errors
15: Continue loop
16: end if
17: Return PY' > verified perfect decompilation
18: end loop

19: end function

2.2 Correcting Failed Decompilations

Perfect decompilation verification forms the foundation of a user-
oriented feedback loop in which reversers can iteratively “patch” a
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Figure 2: PyLINguaL Web IDE for patching erroneous decompilations.

decompilation result to ultimately achieve perfect decompilation.
PyYLINGUAL’s online web service incorporates perfect decompilation
to validate its outputs and enable user-oriented patching. The web
interface enables users to upload PYC files and receive the decom-
piled source code, accompanied by an “equivalence report” that
summarizes the decompilation status of each code object along
with the error types and their locations. When the decompilation
is imperfect, the patching interface depicted in Figure 2 is exposed,
featuring a web-based IDE [28], allowing users to correct incom-
plete decompilation outputs by submitting patches. The patching
interface consists of three major components: a file information bar,
which includes the Python version and an expandable equivalence
report; the patch editor, which can be configured to show different
views of the decompilation result; and a bytecode diff view, which
helps users locate semantic errors by highlighting the differences
between the original bytecode and recompiled patch bytecode.

The patching process generally follows illustrated in Figure 1,
detailed in Algorithm 1. Using bytecode difference viewer to locate
and repair decompilation errors, a human reverser can iteratively
close the gap between the original PYC and the decompiled PYC’
until the accuracy of the decompilation is confirmed. Verification
of user patches only involves CPython compilation and static code
equivalency verification, which has acceptable computational over-
head. Importantly, the dominance of CPython in the PYC compiler
ecosystem combined with its limited configurability makes com-
piler provenance [29] trivial, enabling reliable perfect decompilation
tests even on user-uploaded PYC files.

While the current version of the user interface requires familiar-
ity with Python bytecode to use effectively, perfect decompilation
provides the foundation for supporting novice reverse engineers.
By improving and refining the information presented, the time,
effort, and expertise required to identify and repair decompilation

Files and patches submitted to the PyLin-
gual web service are retained to support
future research and development.

By using this service, you warrant that
you are not violating export control laws,
intellectual property rights, licenses, or
other legal or contractual obligations, and
that you are not using this service for im-
proper, unauthorized, or malicious pur-
poses. Proprietary files uploaded to PyLin-
gual may be disclosed to relevant third
parties.

Figure 3: PyLingual’s end-user privacy agreement. The language was
decided through a collaboration between our team (the PYLINGUAL
web service maintainers), UTD’s IRB, and UTD’s legal team.

failures can be minimized. Further, repaired files provide a rich
source of information regarding the weaknesses of the decompiler,
guiding and assisting in future developments.

3 Ethical Considerations

As we utilize PYC binaries and user-patches uploaded to PyLIN-
GUAL web service for user and data analysis studies, it is paramount
to adhere to legal and ethical guidelines to ensure the prevention
of both intentional and unintentional harm to participants. Below,
we outline the legal and ethical risks associated with PyLINGUAL
and the measures implemented to mitigate them.

Potential privacy risks of PYC binaries and patches. From
a user privacy perspective, as we are using user-uploaded files
and patches for our research, we can consider three kinds of risk
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sources: (1) PYC binaries, (2) user patches, and (3) network logs.
Users who want to use PYLINGUAL web service primarily share the
PYC binary to reverse the original Python source code. Additionally,
when PYLINGUAL produces incomplete/erroneous source, users may
attempt to fix those errors by editing the incomplete source code
and upload their patches to be verified by PYLINGUAL’s accuracy
verification.

For the PYC binaries, it is generally assumed that the original
author of the program is not the same as the user who uploaded
the PYC file for decompilation. As such, during discussions with
the university’s IRB office, we determined that PYC uploads did not
present any significant privacy risks. Similarly, no concrete privacy
concerns were associated with the user-submitted patches. While
IP addresses were considered, they were not identified as a privacy
risk since they typically cannot be used to directly identify a specific
user. Discussions primarily focused on cases where IP addresses
and web service log entries could potentially be linked to PYC
binaries and user patches, especially when augmented with external
intelligence tools (e.g., IP WHOIS, geolocation, or passive DNS).
After a thorough review, the university IRB concluded that the user
study did not introduce privacy risks requiring IRB oversight.

To further mitigate any potential privacy risks, we hashed all
IP addresses used in the study. This approach ensures that the IP
addresses remain distinguishable for analysis while preventing the
disclosure of any associated information. Also, the PYLINGUAL web
service prominently features an end-user agreement (Figure 3) that
explicitly requests users’ consent to share their PYC binaries and
user patches for research purposes. Furthermore, PYLINGUAL offers
users the option to delete their files and patches at any time.

File retainment and intellectual property. To use the PYLIN-
GUAL web service, all users must accept a simple privacy agreement
(Figure 3) that warrants they are aware that files and patches sub-
mitted will be retained for research purposes, and that by uploading
files they are not violating any legal or contractual obligations.
Ethical consideration for classroom study. For the classroom
user study conducted in a controlled environment with human par-
ticipants, the university IRB approved the study under the exempt
categoryl. The approval included administrative recommendations
to ensure students were treated fairly and allowed to voluntarily
decide whether to participate, free from any external pressure or
coercion.

4 Decompilation Errors

In general, the perfect decompilation test recognizes two kinds of
failures: (1) syntax errors (line 6 in Algorithm 1), and (2) semantic
errors (line 12 in Algorithm 1). While different decompilers will
have their own failure trends and idiosyncrasies, our study focuses
on PyLiNGuAL for its broad accessibility and support for recent
Python versions.

Syntactic errors. In many cases, recovered source code contains
syntax errors that prevent it from being recompiled into a PYC bi-
nary to conduct bytecode-level analysis or to be compared with the
original. These errors typically stem from issues such as incorrect
indentation, truncated statements, or mismatched parentheses. To
apply perfect decompilation and generate an equivalence report,
users must first resolve all syntax errors.
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Fixing syntax errors is straightforward — for example, by delet-
ing code statements or blocks that contain errors. However, heavy-
handed approaches often worsen inaccuracies in the decompilation,
resulting in even greater discrepancies between the original PYC bi-
nary and the recompiled PYC binary. From our controlled user study,
we found that users effectively utilized Al-based code assistance
tools for these.

Semantic errors. When the recovered source code is a valid pro-
gram, but contains instruction-level differences with the original
binary, the recovered code contains semantic errors. While both —
original and recompiled binaries are valid Python programs, their
static representations are different assuming both are compiled
using the same CPython compiler. In the context of perfect decom-
pilation, it is possible for functionally equivalent decompilations to
contain semantic errors.

PyLINGUAL produces semantically incorrect results primarily
due to its statistical nature, which relies on NLP components. NLP-
based approaches are inherently error-prone and exhibit weak-
nesses when handling certain input types, such as long sequences,
rare language syntax, and ambiguous code constructs. Additionally,
deeply nested control structures and complex conditional clauses
pose significant challenges for accurate decompilation. These limi-
tations manifest as discrepancies in the decompiled output, which
are identified during the equivalency verification phase. Correcting
semantic errors requires users to have experience and knowledge of
Python bytecode and its translation into Python statements. During
both observational and controlled user studies, we observed that
such knowledge and experience can be rapidly acquired over a few
iterations of patching erroneous decompilations.

5 Perfect Decompilation User Study

By analyzing uploaded binaries and user patches collected from
the PYLINGUAL web service, we conducted an observational study
against patches uploaded by Internet users (§5.1) and designed
in-class assignments for students enrolled in a system security
course assigning 40 malware samples incompletely decompiled by
PYLINGUAL with an exit survey at the end (§5.3, §5.4). Specifically,
we aimed to address the following research questions:
e RQ1: Aare users inclined to fix incomplete decompilation
outputs? If so, does the type of program affect their motiva-
tion? (§5.1, §5.2)
* RQ2: How difficult is it to repair incomplete decompilations?
In particular, which subtasks of PYC decompilation are per-
ceived as easy or difficult? (§5.3, §5.4)
e RQ3: How can the design of automatic decompilers be im-
proved using perfect decompilation? (§5.4)

We answer these research questions using two studies with
distinct methodologies and objectives. We begin with a purely
observational study of Python binary files and subsequent source-
level patches that anonymous internet users have uploaded to
pylingual.io [15] to answer RQ1 (§5.1). The observational setting
uniquely allows us to concretely study real-world decompiler users’
motivations without the use of an artificial research setting (§5.2).
However, the uncontrolled observational setting is ill-equipped to
answer RQ2 because users unsurprisingly upload and subsequently
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Figure 4: The number of bytecode errors in PYC files decompiled by
PYLINGUAL, including only files with one or more errors.

patch different files, which makes direct patch difficulty compar-
isons challenging. Therefore, we pursue RQ2 with a controlled
classroom study that examines the difficulty of patching incom-
plete decompilations by directly asking participants to patch several
preselected incomplete decompilations. Similarly, answering RQ3
requires direct user feedback, which is not obtainable by a purely
observational study, so we pursue RQ3 through a classroom study
exit survey in §5.4.

5.1 Python Decompilation In The Wild

Our study focuses exclusively on PYC binaries uploaded to PYLIN-
GUAL because it is the only online decompiler that currently exposes
a patching interface with perfect decompilation verification.

Since November 2023, pylingual.io has received 181,646 user-
uploaded PYC binaries for decompilation from 27,555 unique IP
addresses, of which 111,204 PYC (= 61.22%) decompiled perfectly
without any patches needed. We focus on the remaining 70,442
PYC binaries that did not accurately decompile, and the subsequent
efforts of users to repair the decompilation results. To this end,
users have submitted 9,003 patches across 2,761 files and 2,599 IP
addresses. These efforts have resulted in 393 additional files with
semantically verified decompilations.

Contrasting these patch statistics with the decompilation sta-
tistics in Figure 4, it is immediately apparent that only a small
fraction of incomplete decompilations receive patches from users,
and only a small fraction of users engage in patching. Despite the
small proportion of incomplete decompilations that are repaired by
user-submitted patches, we find that most incomplete but syntacti-
cally valid decompilations are near-correct, with nearly 21.78% only
including one bytecode error, and over 36.23% including just two
or fewer bytecode errors. Here, a bytecode error is a contiguous
run of incorrect bytecode instructions which were inserted, modi-
fied, or deleted, as compared to the original bytecode by a typical
diff tool. However, we also find that the majority (x 63.78%) of
incomplete decompilations contain syntax errors, which prevents
bytecode-level analysis.
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Figure 5: The number of uploaded and patched files by unique IPs in
the wild. Most users only interact with a small number of PYCs.

In Figure 5, the number of uploaded and patched files for each
user heavily skews left, with single-file usage accounting for the
majority of the total file uploads and patches. This pattern is evi-
dent from the bar graphs and cumulative percentage curve, which
highlight a steep decline in activity beyond the first instance. Specif-
ically, assuming each unique IP address corresponds to a unique
user, 52.64% of file uploaders uploaded files only once and 85.23%
of patchers patched a file only once. The curved graph, which
represents the cumulative percentage, shows a sharp incline for
the initial upload and patch, followed by a flattening trend. This
trend highlights that how drastically the number of file uploads
and patches decreases after the first instance. These observations
suggest that most users visit PYLINGUAL to decompile only a single
PYC file, then depart after applying their patch.

Table 1: At p ~ 1.7 X 107 and )(2 = 160, online users whose first patch
was successful were over 3 times more likely to patch further files.

First Patch Failed First Patch Success

Only Patched Once 1,990 225
Patched Multiple Times 252 132

Moving on to the initial analysis, in Table 1, a )(2 test [30] for
independence indicates that the success of a user’s first patched file
positively correlates with that user returning to patch additional
files moderately but significantly. In a )(2 test, the correlation coef-
ficient r varies from —1, indicating a perfect negative correlation
to 1, indicating a perfect positive correlation, with r values near 0
indicating weak to no correlation. The observed r = 0.25 indicates
a weak positive correlation at p = 1.7 X 10~°°, which is well beyond
the conventional threshold for statistical significance of p < 0.05.In
natural language, those users who experience an “early win” when
patching files are over three times more likely to continue on to
patch multiple files compared to the rest of PYLINGUAL users. While
this test does not establish causation, a successful patch indicates
that the user is capable of using the patching interface, aware that
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patching to achieve correctness guarantees is possible, and confi-
dent enough to approach the patching problem. In this analysis, we
make the simplifying assumption that IP addresses map one-to-one
with human users. Although this assumption is unlikely to hold in
general, we still find that it leads to useful insights.

Given the low observed rates of patch attempts and successes,
alongside the correlation between early successes and continued
attempts, we will later investigate if difficulty is a key inhibiting fac-
tor of patching. Because an observational study lacks the ability to
control for user knowledge and motivation, we design a controlled
classroom study with systems security students that evaluates the
ability of novice reverse engineers to successfully patch incomplete
decompilation results in §5.3.

5.2 Semantics-Dependent Patching In The Wild

To identify factors that motivate online PYLINGUAL users to de-
compile and subsequently patch imperfect decompilation results,
we analyze the correlation between the contents of uploaded PYC
files in the wild and online users’ patching behavior. For this, we
used the jina-embeddings-v2-base-code [31] long-document
multilingual code-tuned embedding model to generate neural em-
beddings for each decompilation result in the dataset, then used
unsupervised k-means clustering to produce 34 semantic clusters
of files. We then labeled each cluster by uploading files to Gemini-
2.0-Flash and receiving up to five descriptive tags per file. Joint tag
frequencies per cluster were computed, and tags occurring fewer
than 10 times were filtered out. Next, we calculated pairwise mutual
information scores between each remaining tag and cluster. For
each cluster, the top five tags with the highest mutual information
scores were selected. Finally, these selected tags are used to describe
the class of programs represented by each cluster. The full list of
clusters is provided in Table 2, and related program demographic
statistics are provided in our supplementary materials’. Although
the clusters have some overlap and the accuracy of the cluster labels
is limited by the stochastic and manual processes used to produce
them, these semantic program clusters provide valuable insights
into the relationship between program file contents and the varied
goals of real-world reverse engineers.

Among the diverse PYC files that reversers seek to decompile in
practice, we find malware payloads, web servers, desktop automa-
tion scripts, creative software, and more. We also observe multiple
flavors of obfuscation, including traditional tools like PyArmor [32],
variable and string scramblers like Oxyry [33], to powershell-esque
recursive decompression and exec calls on opaque bytestrings.
We even observe substantial representation of Python standard
library files, which are included in standalone executable builds
from packaging tools like PylInstaller [34].

Patching activity by cluster. Figure 6 shows the univariate distri-
bution of patching activity by cluster. The most frequently patched
clusters, 15 (Game Cheats), 31 (Credential Stealers), and 30 (Trading
Bots), are also some of the most commonly co-occurring clusters
containing a high proportion of malicious programs. Other highly
patched clusters include cluster 20 (Automation Bots) and cluster 33
(Graphical Interfaces), which commonly co-occurred with cluster
30. Three of the least frequently patched clusters are 19 (Plotly
Objects), 3 (Plotly Validators), and 24 (Oracle Cloud Infrastructure),
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Table 2: Descriptions and proportion of PYCs with VirusTotal alerts
for each semantic cluster from the wild.

D Description VT Alerts | ID Description VT Alerts
0 Data Visualization 0.00% 17 Concurrency 0.00%
1 Database ORM 0.00% 18 Code Analysis 0.00%
2 Interface Definitions 0.00% 19 Plotly Objects 0.00%
3 Plotly Validators 0.00% 20 Automation Bots 0.13%
4 Cryptography and Auth 0.00% 21 Web Clients 0.00%
5 System Tools 0.64% 22 Google API Clients 0.00%
6 Testing Frameworks 0.00% 23 API Definitions 0.00%
7 Obfuscated Code 10.84% 24 Oracle Cloud Infrastructure 0.00%
8 Syntax Highlighting 0.00% 25 Machine Learning 0.00%
9 LLM Applications 0.00% 26 ‘Web Frameworks 0.00%
10 Simulation and Modelling 1.87% 27 Cloud APIs 0.00%
11 Cloud API Clients 0.00% 28 Encryption/Decryption 8.27%
12 File Management 0.20% 29 Code Packing 0.00%
13 Package Management 0.20% 30 Trading Bots 1.84%
14 Game Modding 0.00% 31 Credential Stealers 7.61%
15 Game Cheats 0.35% 32 Cloud Workflows 0.00%
16 Scientific Computing 0.00% 33 Graphical Interfaces 0.04%
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Figure 6: Observed patch rate in the wild by semantic cluster, with
95% confidence intervals. Only clusters where at least 1% of uploaded
files are patched are shown. See Table 2 for all clusters.

all with zero patches uploaded. Clusters 19 and 3 are different parts
of the open-source Plotly library that appear to have been decom-
piled in bulk by few unique IP addresses, most likely for testing
purposes. Cluster 24 contains Oracle Cloud Infrastructure clients
and definitions, which also appear to have been uploaded as part
of some bulk decompilations. Overall, we see that users are more
likely to patch files that are part of malicious software — these users
are likely highly motivated to achieve decompilation so they can
ensure they have correctly reverse-engineered these malware sam-
ples. The least motivated patchers are either testing the quality of
the decompilation service or are decompiling large projects in bulk,



CCS *25, October 13-17, 2025, Taipei, Taiwan.

r100%
16000 A
& 14000 1 L 80%
% 12000
g
5 10000 1 r60%
0,
5 80001 61.26%
E Uploaded L 40%
c 6000 1 Patch Attempted
2 4000 1 —e— Uploaded (Cum. %)
L 0,
—e— Patch Attempted (Cum. %) 20%
2000 A
0 21 o%
1 5 10 15 20 25 32

Number of Clusters Participated In

Figure 7: Semantic cluster participation by unique IPs in the wild.

and are therefore less motivated to manually correct decompilation
errors.

Semantic cluster co-occurrence analysis. Dividing the data
into clusters helps reveal users’ specific interests and demonstrates
possible overlaps in user activities across clusters. To explore us-
age correlations between clusters, we measured the extent of user
cross-involvement between pairs of semantic clusters. As shown
in Figure 7, most users—61.26% of uploaders and 90.53% of patch-
ers—participate in only one cluster. The cumulative percentage
curve flattens exponentially beyond a single cluster, indicating that
users’ activity is often confined to a single area of interest.

Figure 8 is a heatmap of the number of users that showed activ-
ity in at least the pair of clusters associated with each cell. That
is, a user who uploads files in three clusters will contribute to two
cells above the main diagonal, one for each pair of cluster partic-
ipation. In the upload activity, we found five pairs of frequently
co-occurring clusters, as well as three cluster pairs that shared a
common malicious cluster, cluster 31 (credential stealer) as a pair
component.

Out of 34 clusters, 9 clusters contain less than 1% of malicious
behavior, and can therefore programs reside in such clusters can
be treated as either malicious or benign. Notably, cluster 5 (System
Tools) commonly pairs with both malicious and benign clusters,
acting as an intermediate cluster.

Cluster 5 (System Tools) and cluster 31 (Credential Stealers) pair
shows the adversarial usage of cluster 5. Tags such as keylogger and
registry-modification in cluster 5 suggest that it includes malicious
programs that monitor user activity or manipulate the Windows
registry to achieve persistence execution. Cluster 31 can leverage
such behavior from cluster 5 to extract authentication tokens, per-
sonal information, and the key of cryptocurrency wallet from local
applications and web browsers. This overlap highlights how cer-
tain system-level capabilities are exploited to facilitate undesired
activity, revealing the types of behaviors adversaries are one of the
most interested in combining.

Cluster 31 (Credential Stealers) also displays high co-occurrence
with cluster 13 (Package Metadata) and cluster 15 (Game Cheats).
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(b) Heatmap of shared patcher counts for cluster pairs in the wild.

Figure 8: Heatmaps of user activity across pairs of semantic clusters.
For each pair, we show the number of users that uploaded/patched
at least one file belonging to each cluster in the pair.

Anomalous behaviors still require access to common Python li-
braries and utilities, often sourced from benign-looking package
metadata to facilitate malicious activity. Interestingly, cluster 15
is frequently paired with cluster 31, suggesting that attackers of-
ten attempt to extract user credentials from gaming platforms. For
instance, these programs typically spoof User-Agent headers to
mimic legitimate game clients, then send crafted login requests
to the target service to obtain access tokens from the response.
This attack indicates a recurring pattern where credential stealers
repurpose gaming-related utilities to infiltrate user accounts under
the guise of legitimate traffic.

Figure 8b presents a heatmap highlighting co-occurrences of
users patching files across cluster pairs. Since patches are signif-
icantly fewer than uploads, this heatmap is notably sparser than
Figure 8a. Among the most prominent co-occurring pairs are cluster
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31 (Credential Stealers) with cluster 5 (System Tools) and cluster
30 (Trading Bots), as well as the pairing of cluster 30 with cluster
33 (GUIs). These clusters represent security-relevant categories
that offensive reverse engineers attempt to patch more frequently
compared to other clusters, aiming to deploy attacks. Recall that
each of these clusters independently attracts a disproportionately
high number of patches; their intersection suggests a shared intent
among users to modify or integrate malware-related functionality.

In cluster 30 (Trading Bots), malicious programs often include
automated data exfiltration routines targeting system information,
browser data, Discord tokens, and mechanisms that block access to
security-related websites or task managers. We also observed that
GUI front-ends (cluster 33) are frequently employed in ransomware
to demand payments or to masquerade malicious operations behind
a convincing user interface. Taken together, these behaviors un-
derscore how adversaries integrate specialized components—such
as trading bots, system utilities, and deceptive GUIs—into attacks.
Their shared presence in patch activity describes attackers’ contin-
uous efforts to enhance success rate of their attacks by integrating
multiple malicious features.

5.3 Classroom Study

To test the difficulty of correcting incomplete decompilation
through user-submitted patches in isolation of hidden variables
in the observational user study, such as user background, motiva-
tion, and technical expertise, we design and execute a classroom
study. To respect the privacy of the 37 student participants, the
only data collected in the study are anonymized patch histories
and an exit survey. The form of the patch histories for analysis is
the same as in the observational study, the key differences being
that we control the challenge binaries and operate with a known
population of patchers. The typical student participant has a strong
technical background, but negligible experience with PYC bytecode
or Python reverse engineering; the generalized conclusions from
the classroom study assume that the capabilities of the student par-
ticipants adequately approximate those of a typical junior reverse
engineer.

Malware assignment summary. To emulate the conditions of
real-world reverse engineers, we selected 40 PYC malware samples
with decompilation errors, prioritizing those with a greater num-
ber of VirusTotal alerts and mitigating duplicates. These patching
challenges, enumerated in our supplementary material’, provide
a practical view into how junior reversers approach PYC malware
decompilation. Most of the challenges used in this study were steal-
ers for cookies, credentials, and authentication tokens. Thirteen of
these files have anti-debugging or anti-vm capabilities attempting
to prevent reverse engineers from dynamically analyzing them. The
remaining files were Remote Access Trojans (RAT) and keyloggers.
Some of these files added themselves as startup programs to per-
sist across sessions with Anti-Antivirus features keeping the host
infected.

The challenge PYC malware samples were provided to the stu-
dents through a shared sandbox machine to minimize the risk of
harm to the students. This sandbox machine included PYC reverse
engineering tools, such as xdis [35] and a control flow graph vi-
sualization script, which were advertised to the students. In the
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assignment, students received points for each malware sample they
successfully patched. The scoring mechanism is as follows: the first
10 submitted challenges are worth 20 points each, for a total of 200
points; the next 10 submitted challenges are worth 10 points each,
for a total of 100 points; the final 20 submitted challenges are worth
5 points each, for a total of 100 points. Full credit for the assignment
was designated at 200 points, with the remaining 200 points for
challenges beyond the 10th left as extra credit.

The incentive structure is the most significant difference between
the classroom participants and the real-world users. The students
approached PYCs from the wild using the same publicly available
tools as real Python reversers, but were explicitly assigned perfect
decompilation as a goal instead of regarding it as an intermediate
step in a wider reversing process, similar to previous studies in
this space [21]. Students seeking to minimize their workload while
maximizing their score are incentivized to “scout” the challenge
PYCs, selectively choosing the easiest ones to attempt. Incentiviz-
ing scouting is an intentional design choice made to amplify the
signal from students’ perception of difficulty as measured by the
engagement rate of each challenge, where the engagement rate
is the ratio of the number of students who attempted a challenge
by submitting a patch versus the students who simply viewed a
challenge without attempting a patch.

General patching workflow. The process of repairing a partially
correct decompilation result can be conceptualized as several it-
erative improvements over the baseline decompiler output, each
consisting of a simple process: (1) identify an error to fix; (2) locate
the error in the source code; (3) modify the source code to fix the
error; and (4) recompile the modified source code to verify that the
error was fixed as intended. The form and execution of each step
changes depending on the specific error in question, which makes
automating the patching process difficult. The order in which errors
are approached is ideally determined by the extent to which they
obscure or distract from other errors. For example, syntax errors
should be addressed first because they prevent the compilation
step needed to identify and fix bytecode errors. Fortunately, syn-
tax errors are easy to identify, locate, and fix due to helpful error
messages from the compiler. Bytecode errors can be identified by
analyzing the difference in instructions between the original PYC
file and the candidate PYC file. We summarize common patching
approaches and pain points identified in our exit survey in §5.4.

Patch difficulty and effort estimation. Figure 9 shows that par-
ticipants were consistently able to accurately patch the challenge
PYCs, with the median student successfully patching 10 challenges,
achieving full credit for the assignment. 15 of the 37 participants
completed more than 10 challenges, with the most prolific student
patcher producing 28 successful patches out of the 40 available
challenges. This trend is unsurprising given the incentive struc-
ture of the classroom study, and demonstrates that even novice
reversers are able to repair incomplete decompilation results when
appropriately motivated. Additionally, we find that the success rates
of participants are generally high, with a median success rate of
63.16%, and 4 participants achieving a 100% success rate, eventually
fully solving every challenge where they attempted a patch.
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Figure 10: Distribution of the median time taken on each challenge
during the classroom study. Median times were taken separately for
successful and unsuccessful patches.

Further, in Figure 10, we find that participants did not typically
spend excessive time on each challenge. Measuring the time be-
tween the first patch submission and last patch submission for each
participant-challenge pair, we see that the median time to either
succeed or abandon the challenge is approximately 30 minutes. We
also see several high outliers caused by participants briefly work-
ing on a challenge on one day, then returning to complete it on a
later date. Considering the time spent alongside the student success
rates, we find that patching imperfect decompilations is neither
prohibitively difficult nor prohibitively labor-intensive.
Challenge selection strategies. Surprisingly, despite the design
of the assignment encouraging scouting — uploading many chal-
lenges and selectively choosing easy ones to attempt based on the
decompilation error reports — 40% of participants created at least
one patch for every challenge they uploaded to PYLINGUAL. Further,
each of the 4 participants with a 100% success rate attempted to
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Figure 11: Small PYC files received disproportionately many attempts
from classroom study participants and yielded higher success rates
than larger PYC files.
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Figure 12: In the wild, file size strongly impacts patch success rates,
but does not strongly impact patch attempt rates.

patch every challenge they uploaded. Only 24% of participants re-
jected more than two files, which at first glance appears to indicate
that the participants were not selective about which challenges to
attempt. However, Figure 11 reveals a simple strategy employed by
almost all of the participants: use the file size of the challenge PYCs
as a proxy for difficulty.

Although naive, the efficacy of this strategy is corroborated by
patch success rates from the wild, shown in Figure 12. As the size of
the PYC file increases, the number of instructions and code objects
also tends to increase (with the notable exception of files containing
large encrypted payloads). Intuitively, the more code a PYC contains,
the more opportunities there are for decompilers to make mistakes;
this tendency is amplified in neural decompilers. Despite the clear
impact of file size on patching difficulty, it does not negatively
impact reversers’ willingness to attempt patches in the wild.
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5.4 Classroom Study Exit Survey

Near the end of the classroom study period, we administered an
optional exit survey consisting of 27 questions (available in our
supplementary materials 2) focused on how students approached
perfect decompilation and the challenges they encountered during
the process. We received 26 responses from a total of 37 study
participants. We were unable to conduct a similar exit survey for
the observational study participants because we did not collect
identifiable information or perform interventions.

The core research question we asked was: “Did the process of
PYC patching help students better understand the malware?” The
majority of students agreed that the patching process was helpful
(2 strongly agree, 13 agree, 7 somewhat agree, 1 somewhat disagree,
and 1 strongly disagree). These responses suggest that the act of
patching—aimed at achieving perfect decompilation—can be effec-
tive in deepening students’ understanding of malware semantics, in
addition to the inherent benefits of recovering recompilable source
code for a given malware sample. Another conclusion from our
survey results is that novice reversers tend to adopt very simple
strategies to fix decompilation errors and heavily rely on large lan-
guage models (LLMs) to translate bytecode sequences to Python
statements.

When asked in what order they approached bytecode errors in an
imperfectly decompiled PYC file, the majority of students reported
simply starting at the top of the file and working downwards, as
opposed to trying to prioritize code objects based on any heuristic.
Anecdotally, we have found that the best order for approaching
bytecode errors is depth-first within each control flow structure,
starting from the entry point of each code object. By starting from
the top of each code object, patchers can reduce the amount of
distracting artifacts that are present in the bytecode diff view, and
by fixing the innermost control flow elements first, patchers can
more accurately compare jump targets between the original and
candidate PYC files.

In Figure 13, students reported less frequently using more techni-
cal strategies to map bytecode errors to decompiled source. When
asked how often they used tools other than PYLINGUAL, students’
responses were split approximately evenly between those who very
frequently used tools and those who rarely used any at all. Out of
the students who reported using tools, the vast majority of them
reported using LLMs, with very few using tools specialized for PYC
decompilation. Despite being instructed in class on how to use two
useful external tools — xdis [35] and a tool to visualize control flow
graphs — very few students reported using either of these tools.
Instead, students largely relied on what was given to them in the
PyLinGuaAL interface, with some help from LLMs for understanding
bytecode instructions and unclear errors.

These strategies explain in part why students found Python
decompilation to be a very tedious process. When asked to rate
how often they felt stuck on a challenge, most students selected
“Often” or “Very Often”. Figure 14 shows how students rated the
difficulty of various different decompilation errors, with control
flow and exception handling errors being the most difficult. Since
few students used the control flow visualization tool, it makes
sense that control flow was difficult for them to handle. Similarly,
exception handling in Python version 3.11+ uses an exception table
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Figure 13: Classroom exit survey responses to "How often did you
use each of the following strategies to locate the source code section
responsible for a particular error?"

that is not shown in the PYLINGUAL interface, but is shown by
xdis [35] and the control flow visualization tool. In short answer
responses, students overwhelmingly cited these issues as the most
frustrating to deal with.

These results indicate a few potential improvements to the de-
compiler interface that would help novice reversers. Since students
intuitively chose to approach files from the top down, it may be
helpful to use the patching interface to nudge them towards control
flow oriented approaches. The significant difficulty understanding
control flow and the infrequent use of external tools indicates that
the current decompilation interface does a poor job expressing how
to handle control flow errors. The interface should integrate tools
for control flow visualization so they are more accessible to novice
reversers, as this would allow them to better understand errors that
they find difficult to reason with when the code is only laid out
linearly.

In summary, while participants agreed that patching incomplete
decompilations helped them better understand the provided mal-
ware samples, they heavily relied on LLMs to fix statement-level
errors. However, despite assistance from LLMs, many participants
struggled with control-flow-related issues, which current LLMs are
still unable to handle accurately. For future improvements to the
web-based IDE and other decompiler interfaces, we propose two
design directions: (1) integrating LLMs more seamlessly into the
patching workflow, and (2) enhancing CFG visualization and its
linkage to both bytecode and source code interfaces.

6 Related Work

There has been a growing body of research on user behavior in
reversing and decompiling native binaries. We also review related
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work on native binary decompilation, as well as a separate line of
research focused on the decompilation of HDL binaries.

6.1 Reversing User Study

Votipka et al. [36] interviewed sixteen reverse engineers as they
reenacted a recent reverse engineering activity. Through these
semi-structured interviews, the authors extracted common reverse
engineering strategies. Mantovani et al. [37] studied how humans
reverse engineer binary code, with an emphasis on the differences
between novices and experts. Their approach used a Restricted
Focus Viewer: basic blocks were blurred unless selected, allowing
the authors to precisely track the subjects’ attention. Most of these
studies were — necessarily — small. They examined the reversing
process using methods that were human-friendly but not amenable
to automated analysis. As a result, the data was limited to what the
researchers could analyze manually.

Burk et al. [21] introduced the concept of perfect decompilation
as a tool for evaluating how users approach binary reverse engi-
neering tasks. Their work demonstrated the practical viability of
generating semantically equivalent source code and highlighted
its potential to enhance both analysis accuracy and usability in
reverse engineering workflows. In their study, the authors con-
ducted a structured user study through a series of CTF-style binary
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reversing challenges. These challenges were explicitly designed to
examine how users complete decompilation tasks when working
with partial or incorrect outputs—an expected norm due to the
inherent limitations of traditional decompilers, which fail to cover
the original program semantics after compilation and optimization.

While prior research has focused on a curated set of native
binaries, our study leverages the properties of Python bytecode
to extand automated analysis of reversing success to the wild. We
investigate the feasibility of perfect decompilation in this context
using a large-scale real-world dataset that includes a wide range of
Python malware samples. Our analysis provides actionable insights
for advancing decompilation techniques in both Python-specific
and general reverse engineering contexts.

6.2 Native Binary Decompilation

Traditional binary analysis is a well-established research field
due to high demand from reverse engineers who want to understand
binaries without having access to the source and from security
analysts who need to analyze malware payloads. The field has
been extensively explored by both industry and academia [38-45].
Despite the availability of mature, off-the-shelf tools, numerous
research problems related to pushing the limits of decompilation
remain.

Traditional decompilation. Since Cifuentes et al. [38] first pi-
oneered the field, decompilation research has evolved to address
various practical and theoretical challenges, which can be primarily
summarized into two sub-problems: (1) statement translation to
restore type information and data dependencies [46], and (2) struc-
tural analysis to identify code blocks and restore control dependen-
cies among them [38-41]. Structural analysis has more impact on
the performance and usability of a decompiler, so it has been the
primary focus of recent research [39-41].

A few studies have investigated the usability of RE tools. For
instance, researchers have looked at improving the usability of
decompilers [40, 41] showing that better variable naming and a
reduced number of GOTOs affected positively the readability of the
pseudocode.

6.3 HDL Decompilation

The rising popularity of HDLs such as Ruby, Lua, and Golang, is
driving demand for portable packaging and deployment to support
the highly heterogeneous and fragmented IoT (Internet of Things)
and Cyber Physical System (CPS) computing sectors. In response,
developers and malware authors alike have minimized external
dependencies with architecture-neutral formats, standardized mod-
ules, and adaptable runtime components [5, 47, 48]. Compared to
regular binaries directly compiled from low-level system languages
(i.e., assembly and C), HDL families largely lack reversing support.
When dealing with languages that incorporate an intermediate
bytecode representation for their compiled code (e.g., PYCfiles for
Python and CIL files for .NET framework), reverse engineers of-
ten depend on incomplete or inaccurate solutions for analyzing
malicious binaries in this intermediate form.

Python decompilers. Traditionally, uncompyle6 [16] evolved

from early attempts at creating a decompiler that leveraged the
same strategies as traditional compilers covering Python 2.7 - 3.6.
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decompyle3 [17] is a reworking of uncompyle6 to improve its
overall maintainability, focusing on control flow support for Python
3.7 and 3.8. Since decompyle3 first released in 2021 as a fork of the
previous uncompyle6 project, over 10,000 lines of code have been
added to support Python 3.7 and 3.8, with the most recent release
in 2025 still providing no public support to Python 3.9 or later.

pycdc [18] is a less popular Python decompiler due to its lim-
ited coverage of language features. However, pycdc does provide
limited support to Python 3.9 and above, which decompyle3 does
not. pycdc attempts to track control flow structures using a stack,
similar to how the Python interpreter, and matches bytecode state-
ments against a known list of patterns. While pycdc has undergone
a modest = 4, 000 lines of code modification to support Python 3.9
and 3.10, the accuracy of the decompilation results is lacking.

PyLINGUAL [15] is an NLP-assisted Python bytecode decompiler
that scales over the multiple Python versions with higher accuracy
than the existing decompiler. Our research is based on a novel
accuracy verification mechanism “perfect decompilation”, where
decompiled output is validated against the original binary for strict
semantic equivalence thereby users can upload their patches to
correct erroneous decompilation outputs.

Decompilers for other HDLs. Soot [49], designed by Vallée-
Rai et al., provides a framework to decompile binaries written in
Java and Dalvik bytecodes. The Soot framework is actively main-
tained by the open-source community to stay up-to-date with Java.
Furthermore, the framework supports code reassembly to instru-
ment additional functionalities. Several stable decompilers for the
.Net framework [50, 51] are also actively maintained. Golang
and Rust do not have bytecode representation exposed to the user.
Instead, users can directly produce native binaries for different
architectures. The decompilation for such output binaries is more
challenging, as they define proprietary formats and applies aggres-
sive optimizations. We have seen malware written using Golang and
Rust due to their conveniences and architecture coverage. While
no reliable support to reverse such binaries, it is imperative to have
stable decompilation support. Although niche and thus not ac-
tively maintained, decompilers also exist for other HDL families
such as Ruby and Lua [52, 53]. Although malware written using
these HDLs exists, the community lacks reliable support for these
languages. Demands for systematic approaches to fix failures and
reduce maintenance efforts are also high for these decompilers.

7 Discussion and Future Work

Limitations. Being the first study to explore user responses to
incomplete decompilation in the wild, our study still has several
limitations. The core of the data comes from pylingual.io, which
is, to our knowledge, the only online decompiler that exposes a
patching interface with perfect decompilation verification. The file
upload and user patch data from PyLingual is limited to CPython
binaries. Identifiable information about the users is not collected, so
we could not directly survey the observational study participants;
our conclusions about their motivations are inferred from the ob-
served file semantics and patching behaviors. The generalizability
of difficulty estimations from the classroom study rests on the as-
sumption that undergraduate ybersecurity students are similar to
junior reverse engineers. The students in the controlled study were
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taught about perfect decompilation, the Python interpreter, and
common Python reversing tools (e.g., xdis [35]).

Implications of practical perfect decompilation. Our classroom
study showed that even inexperienced reversers can achieve perfect
decompilation with moderate effort, but our observational study
showed that most decompiler users in the wild do not choose to
pursue it. Practically, many decompiler use-cases do not require
perfect decompilation, but there are some use-cases that see an
outsized benefit, as we see in the semantic cluster analysis from
the observational study. Successful perfect decompilation proves
the correctness of a reverse engineering effort, enabling the result
to be easily trusted by other reversers and supports source-level
downstream tasks. Specifically, perfectly decompiling a low-level
program enables it to be modified at the source level and then
recompiled. In the context of security for closed-source Python
applications, there is very little tool support for bytecode-level
program modification, so the ability to patch at the source level
is advantageous. Further, correct source code can be recompiled
in a different Python version, allowing application consumers to
upgrade the interpreter version used in packaged applications to
benefit from security patches and efficiency improvements.

Human-in-the-Loop decompilers. Seeing the ability of humans
to perform a wide range of decompilation subtasks, future decom-
piler works should explore human-centric interfaces that better
enable users to contrast the semantics of the decompiled code with
that of the original low-level program. While current studies of
human-decompiler collaboration are limited by the separation of
the automatic stage and human stage, there may be substantial
gains in efficiency by finding better methods for humans to interact
with the decompiler than simply editing the output. For example,
an expert user could make changes to the intermediate form of the
decompilation output between stages of the automatic decompiler,
such as manually restructuring some small part of the control flow.
Further, uncertainty heuristics could expose key decision points
in the decompilation process where human reversers could apply
domain-specific insights to improve decompilation outcomes.

Automatic decompiler error reports. Under the current “last-
mile” user involvement paradigm, successfully repairing a failed
decompilation results in a pair of a flawed automatic decompiler
output and an exemplar perfect decompilation. Large sets of these
pairs could be used to statistically narrow down the root cause of
common decompiler errors by matching commonalities in the input
low-level programs with commonalities in the patches required
to repair the decompilation result. The primary roadblock in this
direction is privacy. Reverse engineers are often privacy-conscious,
and may be unwilling to share their input low-level programs and
patches in order to help improve publicly available decompilers.
Future work may investigate privacy-preserving aggregation of
patch analytics to automatically produce usable error reports for
decompiler developers.

Language extensions for fine-grained patch control. One of
the major concerns with the difficulty of automatically verifiable
decompilation is “fighting the compiler” - blindly iterating through
many semantically equivalent source code candidates trying to
generate the exact right low-level code sequence, typically by trig-
gering the right sets of compiler optimizations. In our study, we


pylingual.io

CCS 25, October 13-17, 2025, Taipei, Taiwan.

found three such cases that caused participants to fight with the
decompiler before eventually stumbling into the right source code,
asking for assistance, or giving up. These cases included: (1) a list
made of constant f-strings instead of regular string constants to
avoid the list being pre-built at compile time; (2) two identical
lambdas in the same expression placed on separate source lines
instead of one line to prevent the compiler from reusing the same
lambda code object; and (3) an assert statement instead of if
raise AssertionError to trigger the right grouping of compile-
time boolean inversions. To alleviate such annoyances, we notice
that the compiler used to produce the validation PYC candidate does
not necessarily need to be the same compiler that produced the
original PYC; it only needs to be capable of producing the original
PYC. Future work may explore language extensions and compiler
variants that allow the user to exert explicit control over compiler
optimizations to reduce the impact of fighting with the compiler.

Large language models as human surrogates. In recent years,
large language models have provided state-of-the-art performance
across a wide range of text processing, coding, and reasoning tasks.
While [54] found that naively applying language models to perform
end-to-end decompilation was not effective, using language models
to repair localized decompiler failures may still be beneficial. In
this line, a foundation model could be fine-tuned using many pairs
of failed and patched decompilation results so that it can learn
to apply the most common fixes, reducing the workload required
from humans. The prospect of leveraging large language models for
targeted corrections becomes especially promising in the context
of recent developments in reinforcement-learning-based reasoning
improvements [55, 56] and large-context architectures [57, 58].

8 Conclusion

In this paper, we presented a comprehensive study of human-
assisted decompilation of PYC binaries, with a focus on achieving
perfect decompilation from erroneous outputs. Leveraging a unique
dataset of real-world PYC binaries and user-submitted patches, we
investigated how reverse engineers approach the task of correcting
imperfect decompilation results. Our analysis combined both ob-
servational and controlled user studies, identifying key factors that
influence the success of human-guided decompilation and offering
actionable insights for improving decompiler design.

Our findings reveal that certain types of programs—such as un-
obfuscated malware and software with high levels of user interac-
tion—are more likely to motivate users to pursue accurate decom-
pilation. Notably, the overall difficulty of patching errors was not
perceived as a significant barrier. By analyzing the strategies of
successful reversers, we identified patterns and behaviors that can
inform the development of more effective decompilation tools.

We also examined users’ general workflows and tool preferences
when correcting decompilation errors. Many participants reported
frequent reliance on LLMs, particularly for addressing statement-
level issues. However, challenges remained in resolving control
flow errors, which current LLMs struggle to handle effectively.

Lastly, our research demonstrates both the feasibility and the
usefulness of perfect decompilation in the context of Python binaries.
We believe our findings open new avenues for benefiting other
classes of decompilation tasks, including native binaries.

Josh Wiedemeier et al.
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