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Python is one of the most popular programming lan-
guages among both industry developers and malware au-
thors. Despite demand for Python decompilers, community
efforts to maintain automatic Python decompilation tools
have been hindered by Python’s aggressive language im-
provements and unstable bytecode specification. Every year,
language features are added, code generation undergoes
significant changes, and opcodes are added, deleted, and
modified.

Our research aims to integrate Natural Language Pro-
cessing (NLP) techniques with classical Programming Lan-
guage (PL) theory to create a Python decompiler that ac-
comodates evolving language features and changes to the
bytecode specification with minimal human maintenance
effort. PYLINGUAL plugs in data-driven NLP components
to a version-agnostic core to automatically absorb superficial
bytecode and compiler changes, while leveraging program-
matic components for abstract control flow reconstruction.
To establish trust in the decompilation results, we intro-
duce a stringent correctness measure based on “perfect
decompilation”, a statically verifiable refinement of semantic
equivalence.

We demonstrate the efficacy of our approach with ex-
tensive real-world datasets of benign and malicious Python
source code and their corresponding compiled PYC bina-
ries. Our research makes three major contributions: (1) we
present PYLINGUAL, a scalable, data-driven decompilation
framework with state-of-the-art support for Python versions
3.6 through 3.12, improving the perfect decompilation rate
by an average of 45% over the best results of existing
decompiler across four datasets; (2) we provide a Python
decompiler evaluation framework that verifies decompila-
tion results with perfect decompilation; and (3) we launch
PYLINGUAL as a public online service.

1. Introduction

Python is an attractive choice for hackers and industry
developers alike due to its straightforward development,
wide user base, mature ecosystem with pre-built modules,
and multi-platform compatibility [1, 56, 63–68]. Program-
mers aim to budget their time and resources to maximize

their productivity , thus demanding infrastructural support
to accelerate their development cycles. The growing diver-
sity of computing environments and the desire for custom
attack vectors (i.e., crafted for specific targets and scenarios)
only heighten such demands. Closed-source Python projects
package compiled PYC binaries and their dependencies with
an interpreter for their target platforms [2, 3] to create
a standalone executable. Python decompilers reverse the
above process: unpacking the packaged executable to extract
the PYC binaries [69], disassembling them into bytecode
sequences [4], and ultimately recovering the source code [5,
6].

Our work aims to recover Python source code from
disassembled bytecode sequences. Compared to traditional
binaries, PYC binaries contain substantially more informa-
tion, are more decomposable, and do not contain indirect
jumps. These properties trivialize many challenges from
traditional binary decompilation. However, Python’s unique
development model imposes one key challenge that has pre-
vented the maturation of community Python decompilation
efforts: instruction set instability [5, 6].

Python’s bytecode specification is dynamic and con-
stantly evolving, as it is not bound to any underlying
hardware architecture, and the language developers eschew
forwards and backwards compatibility of the bytecode in
favor of design flexibility. With each language version re-
lease, opcodes are removed, added, and modified to sup-
port new language features and improve the performance
of existing language features. For example, the exception
handling mechanism has been reworked twice in the last five
years, with additional code generation changes between the
reworks. Further, recent Python versions have been adopt-
ing aggressive optimizations [7, 70–72] that impact code
generation and control flow structures. The PYC bytecode
specification instability poses a practical challenge: while
implementing a traditional decompiler for any one version is
achievable, the maintenance effort required to provide cross-
version decompilation that quickly supports new version
releases is formidable [5, 6].

To address this research challenge, we introduce PYLIN-
GUAL, a data-driven framework that integrates recent ad-
vances in NLP research with foundational binary analysis



principles. PYLINGUAL aims to demonstrate the effective-
ness of ML-based approaches to correctness-sensitive, PL
domains. PYLINGUAL is a version-agnostic decompilation
pipeline that uses version-specific pluggable NLP models for
simple but labor-intensive translation tasks while applying
classical binary analysis techniques for instruction parsing
and control flow reconstruction. PYLINGUAL consists of
three distinct subcomponents: (1) bytecode segmentation,
(2) statement translation, and (3) control flow reconstruction.
Component boundaries are carefully drawn to minimize
engineering friction.

To verify the correctness of decompilation results to
end-users, PYLINGUAL boldly embraces perfect decompi-
lation [8, 9] (§2), which enables our innovative design
decisions by eliminating the need to trust the decompiler.
PYLINGUAL presents each decompilation result alongside a
verification of correctness or an appropriate failure indica-
tor, preventing statistical errors and decompiler bugs from
eroding trust in the results. Further, perfect decompilation
provides the foundation of feedback loops both for end-users
to improve individual results, and for decompiler designers
to detect and repair decompiler bugs.

Our research is built on an extensive collection of real-
world datasets from both benign and malicious sources [10–
12], which we plan to publish alongside source code and es-
tablished models. Evaluated against an extensive collection
of real-world datasets, PYLINGUAL achieves a 75% perfect
decompilation rate on average across Python 3.6 ∼ 3.12,
marking an average improvement of 45% over State-Of-The-
Art (SOTA) Python decompilers [5, 6, 73]. PYLINGUAL
makes the following contributions:

• PYLINGUAL explores a unique design direction inte-
grating principled binary analysis theories with neural
NLP models to decompile PYC binaries.

• We introduce applications of perfect decompilation to
the design and evaluation of automatic decompilers by
verifying the correctness of decompilation results with
differential testing against the input binary.

• We evaluate PYLINGUAL against existing Python de-
compilers across a wide range of Python versions with
extensive datasets from benign and malicious sources
using the proposed metric.

By being the only service (https://pylingual.io) that pro-
vides high-quality decompilation for the latest Python ver-
sions, the PYLINGUAL service has been recognized as a de
facto framework for reversing modern Python binaries [13,
14]. Regarding the web service’s compliance with privacy,
legal, and ethical guidelines, we have consulted with our
university’s IRB1 and the university legal department. Fur-
ther details can be found in the appendix in §A.5.

Finally, to assist reverse engineers and future research,
we plan to publish our source code, datasets, and models.

1. UTD-IRB-25-6: PyLingual: A Python Decompilation Framework for
Evolving Python Versions

2. Perfect Decompilation

PYLINGUAL adopts the notion of perfect decompilation
to verify the results of automatic decompilation. Used under
various names in prior work [8, 9], perfect decompilation
defines the process of statically verifying the semantic re-
lationship between a high-level program and a correspond-
ing compiled low-level program through differential testing.
Perfect decompilation provides a strict notion of semantic
program equivalence, which facilitates the automation of
analyzing the outputs of arbitrary decompilers.

Traditional measures of decompilation accuracy, such
as Equivalence Modulo Inputs (EMI) [15, 16] or manual
verification, rely on dynamic analysis and are constrained by
their input space. They are thus expensive to measure and
offer limited guarantees of semantic equivalence. Moreover,
they can fail to identify misleading decompilation results
that users find difficult to verify efficiently [17].

Formally, given a low-level program L produced by a
compiler C, a high-level program H is a perfect decompi-
lation of L if and only if C(H) ≈ L, where ≈ denotes a
decidable refinement of general semantic program equiva-
lence. That is, C(H) ≈ L implies that C(H) is semantically
equivalent to L. Note that any choice of ≈ will be necessarily
incomplete because general program equivalence is undecid-
able. An ideal choice of ≈ is efficient to verify, simple to
understand, and approximates general program equivalence.

Burk et al. [8], in the original work proposing per-
fect decompilation, used bytewise equality of assembly to
specialize semantic equivalence (i.e., C(H) = L), but this
formulation assumes that the compiler build chain is fully
reproducible, providing the exact same output for the same
high-level program across different builds. In Python, the
compiler may output any number of equivalent bytecode
variations depending on the context of the build: function
objects may be moved, constant and symbol tables may
be reordered, debugging metadata like the build path and
timestamp could change, and so on.

To overcome the challenge of non-reproducible builds,
we coarsen the refinement of semantic equivalence by
canonicalizing non-semantic information and common
equivalent low-level implementations. Specifically, we apply
three semantics-preserving transformations: (1) strip meta-
data that does not affect runtime execution (e.g., debugging
symbols) from the binary; (2) remove unreachable code
(we show in §3.2 that reliable control flow graphs for
Python bytecode can be statically constructed); (3) merge
consecutive unconditional jumps that have the same targets.
These conservative choices enable the practical application
of perfect decompilation to real-world PYC binaries without
compromising its benefits.
Benefits to automatic decompilers. Perfect decompilation
provides a strong guarantee of semantic equivalence be-
tween the input binary and the decompiled source code, and
is easy to verify for any individual input binary, enabling
users to trust each decompilation result without needing to
trust the decompiler. That is, each correct decompilation
result can be presented alongside verification of correctness.

https://pylingual.io


The validation of perfect decompilation does not involve
the decompiler, so potential decompiler bugs do not erode
trust in the verified decompilation results, and decompiler
designers are able to make adventurous design decisions
without independently proving their soundness. Perfect de-
compilation provides the foundation for an efficient and
effective feedback loop for identifying and repairing decom-
pilation failures both on an ad-hoc case-by-case basis and
by informing decompiler improvements (§A.3).
Limitations and suitability for Python decompilation.
Despite perfect decompilation’s undeniable merits, it has not
been seriously pursued by previous automatic decompiler
research because: (1) the compiler C and the configuration
used to generate the input binary must be known; and (2)
satisfying perfect decompilation is much more difficult than
satisfying a weaker equivalence metric.

On both fronts, Python decompilation is an ideal frontier
to pursue perfection because: (1) Python compilation is
dominated by CPython, which offers very few configura-
tion options; and (2) Python decompilation is easier than
traditional binary decompilation because Python bytecode
contains more information and is more structured than tra-
ditional binaries. Indeed, §4 shows that the core challenges
of Python decompilation are quite different from those of
traditional binary decompilation.

3. Python Bytecode

We provide background on the structure of Python byte-
code, summarize its key properties with respect to decom-
pilation, and briefly discuss existing Python decompilation
approaches and their pitfalls.

3.1. Code Organization

Overview. Python bytecode is organized as a tree of “code
objects” (visualized in Figure 1), each of which correspond-
ing to one function or class. Several language features
such as list comprehensions and lambda expressions are
implemented as anonymous code objects, and the code in
the top-level script is the main code object (alterna-
tively called the <module> code object). These code objects
consist of bytecode instructions, “semantically important”
metadata, and “debugging” metadata. Semantically impor-
tant metadata primarily includes tables for constants and
variable symbols, as well as flags used by the interpreter.
Debugging metadata includes line number information, the
source file name, and the name of the code object, which
support error reporting and tracebacks.
Useful properties. The organization of Python bytecode
trivializes several subtasks that are challenging in traditional
decompilation. Function boundaries are clearly delineated,
with each function consisting of one code object, enabling
each code object to be considered independently. Further,
within each code object, the instructions are separated from
the data and symbol tables. Finally, variable names are
semantically important and are included in the bytecode,
which improves the readability of the decompiled code.

LOAD_CONST
STORE_FAST

LOAD_CONST
STORE_FAST

LOAD_CONST
STORE_FAST

LOAD_CONST
STORE_FAST

LOAD_CONST
STORE_FAST

def  wr apper ( )

def  do( )def  __i ni t __( )

def  mai n( )c l ass A

LOAD_CONST
STORE_FAST

__mai n__

(a) Python source code (b) Nested code object (CO) structure

Figure 1: Python source code with nested code object structure.
Code objects are classes, functions, and comprehensions.

3.2. Control Flow Considerations

There are four broad categories of control flow in
Python: (1) jumps, (2) function calls, (3) return statements,
and (4) exceptions. Perhaps surprisingly, jump targets in
Python are statically determined and cannot cross code
object boundaries. Function call targets, in contrast, are
determined at runtime; this design choice supports the dy-
namic reassignment of function symbols. Return statements
halt the execution of a function and return a value, but the
function may resume execution later in the case of a yield
statement. Exceptions may be raised at any point during
execution to engage a secondary control flow mechanism
that engages exception handlers, executes cleanup code, and
potentially exits the code object.

Fortunately, control flow that is dynamic in the bytecode
is also dynamic in the source code. To build intuition, con-
sider the simple case of calling the builtin print function.
At compile time, the code object has no way of knowing
whether print will have been overwritten by an unrelated
function; the function call in the bytecode simply references
the symbol “print”, which the interpreter resolves at run
time. For decompilers, this means that as long as the correct
symbols are used for function calls, only static control flow
within each code object needs to be structured to correctly
recover the source code. It is quite straightforward to create
a control flow graph that models jumps and returns, and as
we have just seen, function calls can be effectively ignored
when modelling control flow for Python decompilation.

Modelling Python’s exception handling structures re-
quires version-dependent logic, as it has been the subject
of substantial changes in recent years. Prior to Python
3.11, exception handlers were tracked with a block stack
at runtime, and relied on the compiler’s code generation to
ensure that the block stack would be correctly managed in
each code path. In Python 3.11 and beyond, the block stack
was removed in favor of introducing a new metadata table
that maps ranges of instructions to their exception handlers.



4. Python Decompilation Challenges

While the structure of Python bytecode simplifies
many aspects of decompilation, the language’s development
methodology introduces new challenges that have prevented
the maturation of community decompilation efforts.
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Figure 2: Changes to Python opcodes between versions, with 115
opcodes prior to Python 3.6 and 110 opcodes in Python 3.12

4.1. Specification Instability

The most significant challenge in Python decompilation
is the instability of the Python bytecode specification. Since
its initial 1991 release, Python has rapidly deployed feature
updates, bug fixes, and performance improvements. Each
year, minor version releases introduce significant language
features and substantial changes to the bytecode representa-
tion [18], including the addition, deletion, and modification
of instruction opcodes. We summarize the opcode changes
for recent versions in Figure 2. Compared to Java bytecode,
which has undergone no opcode changes in the last decade,
it is typical for significant portions of the Python opcode
specification to change every year. This difference in sta-
bility stems from philosophical differences between Python
and Java, with the Python core development team preferring
to adventurously change the language in pursuit of better
performance and useful language features. Beyond changes
to the opcode definitions, each version of Python intro-
duces insufficiently documented changes to code generation,
which further increases the maintenance effort for Python
decompilers. Recently, the Python community committed to
the “Faster CPython” project [19], resulting in optimizations
that emphasize reordering instructions to reduce the time
spent by the interpreter managing control flow. Of these op-
timizations, the most noteworthy was “zero-cost exceptions”
introduced in Python 3.11 [20], which completely reworked
the exception handling mechanism to use an exception range
table instead of a block stack.

4.2. Previous Python Decompilers

While creating a viable Python decompiler for any given
Python version is merely a matter of engineering, the core
challenge of Python decompilation is to scale across ver-
sions, despite the introduction of new source code features
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Figure 3: PYLINGUAL architecture.

and unpredictable changes to the bytecode specification.
uncompyle6 and decompyle3 are the two most prominent
decompilers for Python [5, 6]. uncompyle6 evolved from
earlier iterations that typically supported only one version of
Python at a time (e.g., uncompyle2 [21]). Another Python
decompilation framework is pycdc, a Python decompiler
written in C++. Like uncompyle6 and decompyle3 , it
seeks to support a broad range of Python versions.

Existing Python decompilation frameworks depend on
hand-crafted version-specific grammars and statement pat-
terns, and have been unable to keep pace with Python’s rapid
release cycle. Since the launch of Python 3.9 in October
2020, existing decompilers have failed to provide suffi-
cient coverage for practical reverse engineering. Abstractly,
PYLINGUAL innovates over existing decompilers by re-
placing pluggable hand-crafted grammars with pluggable
learned NLP models, dramtically reducing maintenance re-
quirements. While recent works such as PYFET [17] aimed
to improve the coverage of these decompilers through input
preprocessing, they have lacked strong output verification to
establish trust in the modified results. Such preprocessing
methods are orthogonal and beneficial to the development
of decompilers that can sustainably support Python’s aggres-
sive development cycle.

5. PYLINGUAL Overview

As shown in Figure 3, PYLINGUAL operates in five
stages centered around three major components. First,
PYLINGUAL conducts code normalization against the
source code and disassembled bytecodes [4] to reduce the
complexity of the inputs to the NLP models (§5.1). Sec-
ond, normalized code objects are provided to the bytecode
segmentation component to identify statement boundaries
(§5.2). Next, the statement translation component trans-
lates each statement of bytecode into the corresponding
Python source code statement (§5.3). Then, the control



flow reconstruction component mechanically reconstructs
the necessary indentation to reproduce the control flow in the
input bytecode (§5.4). Finally, code equivalence verification
conducts instruction-level code comparison to validate the
correctness of the decompiled Python source code (§5.5).
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Figure 4: Simplified example of PYLINGUAL’s workflow.

5.1. Code Normalization

To disassemble PYC files from different Python versions,
PYLINGUAL uses xdis, a version-agnostic open-source dis-
assembler [4], to which we contributed supporting code to
disassemble Python 3.11 and Python 3.12 binaries [22–27].
Then, to reduce the complexity of the PYC bytecode for the
segmentation and translation models, PYLINGUAL replaces
distracting details such as variable names and constant val-
ues with generic masks [28] derived from metadata table
indices in the PYC binary (§3). The original value is me-
chanically restored at the source level at the end of decom-
pilation. Further, PYLINGUAL enhances the presentation of
the bytecode instructions by annotating jump targets and
exception-handling structures. This input preprocessing step
allows PYLINGUAL to standardize the inputs to the NLP
models, even when the bytecode representation changes
significantly. An illustrative example of normalized source
code and bytecode is provided in Figure 4.

5.2. Bytecode Segmentation

The segmentation module has two goals: (1) divide
the bytecode into independently digestible “statements” to
support the translation module (§5.3); and (2) associate
bytecode instructions with their corresponding source code
statements to support control flow reconstruction (§5.4).
Leveraging the grammatical notion of “statements” from
source code, we define a “bytecode statement” to be the
bytecode instructions that are directly attributed to a source
code statement by the CPython compiler.

In a controlled environment with source code access, we
can obtain bytecode statements by first using Python’s ast
module to place each source code statement on a separate
line, then referring to the line number information (§3) in the
resulting PYC binary to associate bytecode instructions with
their corresponding source code statements. However, in an
uncontrolled environment, the line number information in
the PYC binary is not a reliable reference for identifying
bytecode statements. Not only is it debugging metadata
that can freely be manipulated or omitted without affecting

the execution of the bytecode, but it is also common for
statements to be spread across multiple lines, or even for
multiple statements to appear on the same line.

Therefore, to scalably identify bytecode statements dur-
ing decompilation, we train a BERT [29] segmentation
model for each target Python version (details in appendix
§A.1). This segmentation model is tasked with predicting
whether each bytecode instruction Begins a new statement,
is Internal to the current statement, or Ends the current
statement (illustrated in Figure 4). The transformer model
architecture is an ideal choice for segmentation modelling
because of its ability to capture long-range bidirectional
dependencies. For example, the decision to split a simple if
A and B: may have irreparable control flow ramifications,
depending on the presence of an else: block at some
distant point in the source code (Figure 5). On the other
hand, for a given code object, there might be several valid
segmentations (e.g., import a and import b could become
the equivalent import a, b). Candidate segmentations can
only be mechanically verified by completing the subsequent
decompilation process and verifying the result.

# l ong ' i f '  body

LOAD_FAST A
POP_JUMP_I F_FALSE

  
LOAD_FAST B

POP_JUMP_I F_FALSE

JUMP_FORWARD

Figure 5: Two different bytecode segmentations, resulting in dif-
ferent source-level meanings due to the long-range dependencies.

Top-k segmentation search. Enabled by the output valida-
tion provided by Perfect Decompilation (§2), we search the
top k candidate segmentations during decompilation, balanc-
ing speed and accuracy. These additional segmentation can-
didates are obtained by inverting low-confidence statement
boundary predictions from the segmentation model (details
in appendix §A.3). During this search, PYLINGUAL inverts
at most two statement boundary decisions to generate at
most ten candidates, which we empirically found to provide
an effective tradeoff between decompilation accuracy gain
and runtime overhead.

5.3. Statement Translation

The statement translation module translates bytecode
statements into Python source statements. The generic
sequence-to-sequence translation problem has already been
extensively explored in the NLP community [74]. For the
single-statement Python bytecode to source code translation
task, we train a standard encoder-decoder transformer model
(details in appendix §A.1); this architecture is known to
provide strong performance on a wide variety of tasks [30].
As illustrated in Figure 4, the translation module produces
a flat list of translated source code statements to be stitched
together by the control flow reconstruction module (§5.4).
Custom Python tokenizer. Taking advantage of the struc-
tured nature of Python source code and bytecode, we equip
the statement translation model with a custom tokenizer



built from the documentation of Python’s bytecode instruc-
tions [31] and source code grammar [32]. This limits the
dilution of semantic meaning across multiple tokens, im-
proving semantic coherence. Further details are available in
the appendix in §A.2.
Statement corrector model. To improve the statement
translation module’s accuracy and reliability, we train a cor-
responding corrector model that specializes in repairing the
translations of “difficult” bytecode sequences (model details
in appendix §A.1). These difficult sequences are typically
list comprehensions, large boolean expressions, or complex
function definitions (heuristic discussed in the appendix in
§A.4). The difficulty of these statements stems from their
complexity and from the necessity of knowing the end of
the source line to correctly translate the beginning of the
source line, which is a known weakness of autoregressive
decoders [33–35]. By providing the original bytecode and
first translation attempt as input to the corrector model, it
gets a preview of the full translation, which enables it to fix
inconsistencies in the translation.

5.4. Control Flow Reconstruction

The control flow reconstruction module composes source
code lines from the translation module into a complete
Python program that aims to reflect the control flow of the
original PYC binary. We achieve this composition in three
stages: (1) Control Dependency Graph (CDG) construction,
(2) indentation annotation, and (3) source line arrangement.
CDG construction. As discussed in §3.2, Python bytecode
has no indirect jumps, and each code object can be consid-
ered separately, which enables the efficient construction of
a static Control Flow Graph (CFG) for each code object.
Broadly, in the CFG for a code object, each instruction
is a node, and each node may have up to three outgoing
edges: (1) a “natural” edge that goes to the next instruction
in offset order; (2) a “jump” edge which may be conditional
and whose target is determined by static arguments in the
bytecode; and (3) an “exception” edge, which indicates
the beginning of an exception handling construct and is
directed towards the exception handler. For each instruction,
its edges can be identified by inspecting its opcode and static
argument. Once the CFG is generated, we condense groups
of instructions with no extra control flow into basic blocks to
simplify the rest of the process. From the CFG, we create a
CDG [36] where each node is a basic block and there exists
an edge (u, v) if and only if a control decision in u decides
whether v may execute. An example CDG is provided in
Figure 6; although the CDG in the figure is generated from
bytecode instructions, we have labelled the nodes with the
corresponding source code for illustrative purposes.
Indentation annotation. Leveraging the ability of the CDG
to isolate independent control structures, we aim to assign
each basic block an “indentation level”, which indicates how
deeply nested it is in the code object’s control flow struc-
tures. The core of the algorithm is a breadth-first implemen-
tation of single-source shortest paths from the START node.

(a) Source Code

START

 2:  f or  i  i n r ange( 10) :

 5:  i f  i  % 3 == 0 . . .

11:  i f  i  % 3 == 0:

14:  i f  i  % 5 == 0:

 5:  . . .  and i  % 5 == 0:

 6:  pr i nt ( ' Fi zzBuzz' )

12:  pr i nt ( ' Fi zz ' )

15:  pr i nt ( ' Buzz ' )17:  pr i nt ( i )

(b) Control Dependence Graph (CDG)

Figure 6: A control dependence graph.

In most cases, the indentation level for a node corresponds
exactly with the distance to the START node in the CDG.
However, there are edge cases where this straightforward
approach overestimates the indentation level, which we must
recognize and account for.

For example, statements with internal control flow, such
as assert statements and short-circuited boolean expres-
sions, increase the depth of the CDG without actually con-
taining deep nesting in the source code, and exit statements
like break, continue, and return can add explicit control
dependencies in the CDG where they are implicit in the
source code. For these cases, we leverage the segmentation
and translation results to constrain the indentation with
knowledge of the association between the bytecode and
source code statements.
Source line arrangement. To produce a complete Python
program, we must arrange the source code of each code ob-
ject according to their control dependencies, then stitch to-
gether the source code for the code object tree (as discussed
in §3). For each code object, we first assign each source
code statement to the node containing its first instruction and
apply the indentation level of the CDG node. Then, we order
the statements by the offset of their first instruction, and
insert control flow statements that are explicit in the source
code, but implicit in the bytecode; these statements are
else, finally, and while True after the SETUP LOOP
opcode was removed in Python 3.8. Finally, to combine the
source code snippets of each code object into a complete
program, we recursively traverse the code object hierarchy
and inspect the bytecode to identify function and class
definitions, which load the associated child code object.
We indent and insert the code for the function or class
body immediately after its definition to preserve the code
hierarchy of the decompiled source code.

5.5. Perfect Decompilation Verification

The general program equivalency problem is known to
be undecidable [37], so to verify the results of PYLINGUAL,
we adopt a strict notion of decompilation correctness that
can be efficiently verified for each input binary (§2). After
recompiling the decompiled source code with the appro-
priate version’s compiler (identified by a magic number
from the PYC specification), we remove unreachable code



and merge consecutive unconditional jumps with the same
target to mitigate non-semantic differences. Then, for each
code object in the original PYC file, we confirm that the
corresponding code object in the recompiled PYC file has
the same instructions with the same arguments in the same
order, and verify that all semantically important metadata
(e.g., exception tables) matches exactly. By showing direct
equivalence between the original PYC file and the recompiled
decompilation result, PYLINGUAL verifies the correctness of
decompilation outputs.

While perfect decompilation yields false negatives for
imperfect but semantically equivalent code (e.g., indepen-
dent statements appearing out of order), it importantly never
results in a false positive. This equivalence metric allows
for fully automatic verification of the decompilation results,
which reduces the time cost for reverse engineers and im-
proves trust in the decompilation system.

6. Implementation

PYLINGUAL incorporates NLP models and mechanical
components for its training and translation tasks. Written in
Python, the source code spans approximately 5.6K lines,
excluding contributions of external open-source projects.
Along with the datasets and trained models, we will make
PYLINGUAL’s source code publicly available.
Python bytecode disassembler. Despite bundled disassem-
bler support in Python releases, PYLINGUAL still requires
cross-Python disassembler support due to its design objec-
tive being a generic decompilation framework. PYLINGUAL
depends on xdis [4] for version agnostic disassembler
support. Although outside our research scope, we have
collaborated with the project maintainer, contributing bug
reports, new features, and new language release support.
Transformer models. PYLINGUAL extends two trans-
former models. The bytecode segmentation module uses
Bidirectional Encoder Representations from Transformers
(BERT) [29], an encoder-only language model; our state-
ment translation module uses a code-oriented T5 [75]
encoder-decoder language model. For each Python version,
using one Nvidia RTX 4090 GPU (24G memory), we trained
a segmentation model in 8 hours and a statement model in
20 hours. The model training pipelines were fully automated
using the Huggingface and PyTorch libraries in 938 lines of
Python code.
Training data generation. To train the segmentation and
statement translation models, we prepare ground-truth seg-
mented pairs of source code and bytecode. We leverage
the CodeSearchNet dataset [10] and our collection of over
1,000,000 real-world Python source files [11] by randomly
sampling 200,000 files to serve as the training set, compiling
them in the target version, then constructing ground-truth
segmentations from line number information derived from
debugging symbols. However, in Python, one line can
contain multiple statements split by semicolons (;), and a
single statement can stretch over multiple lines with the line
break (\) construct. To ensure that one line always maps to

one statement, we use Python’s ast module to standardize
the source code prior to compilation, which removes unnec-
essary whitespace, comments, and other irrelevant source-
level artifacts. Finally, we apply code normalization (§5.1)
to ensure that the data representation during training matches
the representation that is used during decompilation. The
training data generation pipeline is fully automated in 955
lines of Python code.
Mechanical components. Beyond the data-driven NLP
components, PYLINGUAL integrates mechanical compo-
nents for stable and accuracy-critical tasks. We first imple-
ment a generic PYC manipulation interface in 1,123 lines
of Python code, which is shared by the control flow recon-
structor (1,083 lines) and the perfect decompilation verifier
(177 lines). The decompiler pipeline that ties all the modules
together is written in 336 lines of code. A key component
of PYLINGUAL’s scalability is the low engineering effort
required to scale across versions, with only ≈ 400 lines
of version-specific code across the seven Python versions
supported at this time.

7. Evaluation

To demonstrate the efficacy of PYLINGUAL, we con-
ducted a comprehensive set of experiments leveraging our
extensive Python datasets. Specifically, we answer the fol-
lowing research questions:

• RQ1: Does PYLINGUAL decompile Python binaries
more accurately than existing decompilers? (§7.2)

• RQ2: Does PYLINGUAL scale Python decompilation
across versions better than existing decompilers? (§7.2)

• RQ3: How does perfect decompilation compare to
other equivalence metrics? (§7.3)

First and foremost, we evaluate PYLINGUAL across
different Python versions compared to existing Python de-
compilers. Then, we showcase case studies that illustrate
the strengths and weaknesses of PYLINGUAL compared to
traditional decompilation. Finally, we analyze recent us-
age statistics of our public online decompilation service to
demonstrate the impact of PYLINGUAL. Our evaluations
were run on the same server from §6, which is equipped with
an AMD Threadripper 5955WX CPU, 128 GB of RAM, and
one Nvidia RTX 4090 GPU.

7.1. Datasets

Table 1 shows the basic compositions of our datasets,
which we plan to release alongside our source code and
models. Given the data-intensive nature of our research, it is
critical to establish extensive datasets from credible sources.
Our datasets originate from three sources:
(1) Code Search Net (CSN) is a community-verified dataset
of source files gathered and open-sourced by GitHub [10].
Originally designed to support code analysis tasks, the
CSN dataset is carefully curated by open-source experts to
encompass diverse aspects of various languages including
Python. However, CSN only captures a static dataset com-
position as of its presentation in 2019, which precludes it



Table 1: Dataset summaries. Instruction counts were collected from
the test set and averaged across versions 3.6-3.12.

Dataset Version
Total

# Files
Instructions per File

(Mean / Std)

CSN source 412,179 76.0 / 84.8
PyPI 1,507,547 929.4 / 4,221.4

VirusTotal

3.6 388 10,188.7 / 32,006.5
3.7 1,363 3,525.7 / 67,022.8
3.8 2,390 3,883.3 / 49,071.2
3.9 5,839 3,336.5 / 97,791.9

PyLingual.io

3.6 21 1,603.0 / 3,071.4
3.7 164 1,140.9 / 1,988.1
3.8 429 1,450.5 / 2,216.7
3.9 331 1,060.3 / 2,010.3
3.10 765 1,156.8 / 1904.6
3.11 535 1,403.2 / 2,055.2
3.12 308 1,273.9 / 1,997.9

from representing source-level language features introduced
in Python 3.9 and beyond.
(2) The Python Package Index (PyPI) is the de facto reposi-
tory for Python modules [11], where thousands of develop-
ers publish, update, and maintain their projects daily to share
with the rest of the community. Every day since July 2022,
our autonomous collection framework has downloaded and
deduplicated project contents from PyPI’s latest update RSS
feed to capture the diverse characteristics of real-world users
and reflect new features as they are adopted.
(3) VirusTotal provides Python malware samples that were
packaged using open-source tools. We collected the dataset
by querying Python-related keywords via VirusTotal’s API
from June to August 2022. In contrast to benign sources,
malicious files only include the PYC binary. The version
coverage of the VirusTotal dataset is limited to 3.9 and below
because Python 3.10 was not yet well-adopted at the time
of collection, and 3.11 and 3.12 had not yet been released.
(4) PyLingual.io is our public online decompilation web
service, which has experienced organic user growth in recent
months, gaining online mentions [38–40] and hundreds of
daily PYC uploads, and peaking at over 1,000 uploads in
one day. This dataset, containing one month of uploads,
directly captures demand for Python decompilation in the
wild, and demonstrates the necessity of providing decom-
pilation coverage for new Python versions. Due to privacy
concerns regarding online user data, this dataset will not
be released. For more details regarding usage statistics and
privacy considerations, refer to §A.5 in the appendix.
Train and test set composition. To train the segmentation
and statement translation models, we randomly selected
100,000 source code files each from CSN and PyPI to serve
as the training set. From the remaining files, we evaluate the
decompiler performance across a random sample of 2,000
source code files from CSN, 3,000 source code files from
PyPI, and all available PYC files from our VirusTotal and
PyLingual.io datasets for the relevant version. The size of
the test set was chosen to balance the comprehensiveness of
the results against the evaluation overhead. Source code files
are compiled to the appropriate version for each experiment.
Test set characteristics. We observed quantitative and qual-
itative differences in the Python code from each of our three
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Figure 7: Distribution of the largest code objects in the test set.

data sources. Figure 7 illustrates the distribution of the size
of the largest code object in each file. Generally, moving
from CSN to PyPI to VirusTotal, the length of the largest
code object increases alongside the complexity of the code.
CSN files typically include only a single short function, with
scarce use of Python’s advanced features. PyPI files vary
widely, from scattered utility files to large class definitions.
Further, because the PyPI and PyLingual.io datasets are
continuously updated, they are the only datasets to include
new source features such as match statements and exception
groups. In PyLingual.io, there are distinct gradations of
difficulty: simple scripts have been uploaded to presumably
test the decompiler, projects and small products have been
uploaded to recover lost source code, and several real-
world malware samples have been uploaded to assist reverse
engineers. Finally, VirusTotal files typically place their entire
payload in one function, contain nested exception handlers,
and sometimes even include obfuscation. The increasing
hostility of each data source provides a gradient of difficulty
to measure the performance of Python decompilers.

7.2. Perfect Decompilation Evaluation

In our evaluation, we measure the accuracy of decompi-
lation using perfect decompilation [8] instead of EMI [15,
16] for three reasons: (1) perfect decompilation provides
strong semantic equivalence guarantees; (2) perfect decom-
pilation does not depend on the selection of inputs; (3)
perfect decompilation is a static verification technique, elim-
inating the requirement to run untrusted code from online
sources. These result in improved reliability, reproducibility,
and safety of our evaluation.

The perfect decompilation implements an efficient and
rigorous accuracy measure, serving as a foundation for many
subsequent analyses. However, its strict accuracy criteria can
be overly conservative, resulting in the incorrect labeling
of semantically equivalent decompilation results as errors.
In §7.3, we manually investigate cases where the perfect
decompilation metric makes such misclassifications.



Table 2: Decompilation accuracy comparison. PYLINGUAL is configured with k = 10.

PYLINGUAL Uncompyle6 [5] Decompyle3 [6] Pycdc [31]

Dataset Version Perfect
Semantic

Error
Syntax
Error

No
Output Perfect

Semantic
Error

Syntax
Error

No
Output Perfect

Semantic
Error

Syntax
Error

No
Output Perfect

Semantic
Error

Syntax
Error

No
Output

CSN

3.6 96.3% 2.4% 1.2% 0.1% 85.7% 13.8% 0.4% 0.1% - - - - 22.1% 61.9% 16.1% 0.0%
3.7 96.0% 2.9% 1.0% 0.1% 82.5% 15.7% 0.7% 1.1% 85.9% 12.9% 1.1% 0.2% 21.8% 62.1% 16.1% 0.0%
3.8 97.0% 1.9% 0.9% 0.1% 64.1% 17.8% 11.6% 6.5% 75.8% 19.0% 1.1% 4.1% 18.8% 62.9% 18.4% 0.0%
3.9 98.5% 0.8% 0.5% 0.2% - - - - - - - - 18.8% 68.8% 12.4% 0.0%
3.10 95.0% 3.7% 1.1% 0.3% - - - - - - - - 18.2% 69.9% 11.8% 0.0%
3.11 95.9% 2.5% 1.5% 0.2% - - - - - - - - 16.4% 81.5% 2.0% 0.0%
3.12 93.4% 3.3% 3.2% 0.2% - - - - - - - - 17.5% 81.5% 1.0% 0.0%

PyPI

3.6 79.3% 10.5% 8.5% 1.7% 47.3% 48.0% 1.6% 3.1% - - - - 9.9% 43.5% 46.7% 0.0%
3.7 80.9% 9.0% 8.4% 1.7% 40.0% 49.1% 5.6% 5.3% 51.0% 41.1% 6.7% 1.2% 9.3% 41.7% 49.0% 0.0%
3.8 83.3% 7.2% 7.9% 1.6% 32.1% 37.1% 17.9% 12.9% 36.6% 48.9% 5.8% 8.7% 8.6% 40.0% 51.4% 0.0%
3.9 87.3% 6.2% 4.8% 1.6% - - - - - - - - 8.6% 46.0% 45.4% 0.0%
3.10 81.1% 7.5% 9.7% 1.7% - - - - - - - - 6.7% 42.2% 51.1% 0.0%
3.11 82.6% 7.2% 8.4% 1.7% - - - - - - - - 8.4% 45.8% 45.9% 0.0%
3.12 77.7% 8.0% 12.7% 1.5% - - - - - - - - 7.2% 44.1% 48.7% 0.0%

VirusTotal

3.6 46.9% 11.9% 36.7% 4.5% 28.6% 37.6% 19.6% 14.3% - - - - 15.8% 40.1% 42.9% 1.1%
3.7 49.7% 7.1% 33.2% 10.0% 28.1% 25.1% 30.8% 16.0% 30.3% 26.0% 36.5% 7.2% 14.5% 42.0% 42.6% 0.9%
3.8 53.9% 6.7% 29.1% 10.2% 22.1% 12.6% 14.6% 50.7% 24.3% 16.5% 14.2% 44.9% 17.1% 40.1% 42.8% 0.0%
3.9 57.5% 9.4% 24.4% 8.7% - - - - - - - - 9.5% 50.6% 39.9% 0.0%

PyLingual.io

3.6 52.4% 4.8% 33.3% 9.5% 28.6% 38.1% 19.0% 14.3% - - - - 9.5% 57.1% 33.3% 0.0%
3.7 80.5% 8.5% 7.3% 3.7% 63.4% 15.2% 11.6% 9.8% 43.3% 37.2% 12.2% 7.3% 15.9% 51.8% 32.3% 0.0%
3.8 59.4% 12.1% 25.2% 3.3% 17.9% 19.6% 5.8% 56.6% 22.4% 28.4% 4.0% 45.2% 10.0% 28.4% 61.3% 0.2%
3.9 73.4% 11.5% 12.4% 2.7% - - - - - - - - 16.3% 53.2% 30.5% 0.0%
3.10 54.9% 14.8% 25.8% 4.6% - - - - - - - - 13.2% 44.4% 42.4% 0.0%
3.11 54.8% 13.1% 26.0% 6.2% - - - - - - - - 9.3% 51.6% 39.1% 0.0%
3.12 43.5% 9.4% 42.9% 4.2% - - - - - - - - 14.3% 49.7% 36.0% 0.0%

Table 2 measures the effectiveness of PYLINGUAL
against other SOTA Python decompilers: uncompyle6,
decompyle3, and pycdc. We evaluate a strawman LLM
decompiler in §7.5. To provide a comprehensive view of
the decompilation landscape, we examine PYC binaries
from research-oriented (CSN), production-oriented (PyPI),
malicious (VirusTotal), and wild (PyLingual.io) environ-
ments. For each decompiler, the decompiled source for each
PYC binary falls into one of four categories:

1) It is Perfect and compiles to the input binary (§2, §5.5).
2) It has Semantic Errors and compiles to a different PYC.
3) It has Syntax Errors and is not valid Python code.
4) The decompiler produced No Output.

The No Output category indicates an internal error in the
decompiler, with causes varying across different decompiler
families. In PYLINGUAL’s case, these failures mainly arise
from GPU memory limitations, which can easily be ad-
dressed at the cost of runtime efficiency using a sliding
window mechanism, or with additional hardware.

PYLINGUAL produces substantially more correct de-
compilation results than any of the other Python decom-
pilers. Even in versions 3.6-3.8, which were previously
considered to be well-supported, PYLINGUAL improves
over the best available traditional decompiler by 13.9% in
CSN, 36.2% in PyPI, 26.0% in PyLingual.io, and 22.4% in
VirusTotal on average. PYLINGUAL also offers competent
support for newer Python versions that were previously not
well-supported; in versions 3.9-3.12, PYLINGUAL improves
over the best available traditional decompiler by 78.0% in
CSN, 74.4% in PyPI, 48.0% in VirusTotal, and 43.4% in
PyLingual.io on average.

All the evaluated Python decompilers exhibit some in-
stability across Python versions, even for the source code
datasets where the same files were compiled with different
versions of Python. In the most extreme cases on the PyPI
dataset, PYLINGUAL’s perfect decompilation rate varied

from 77.7% to 87.3%, uncompyle6’s varied from 32.1%
to 47.3%, decompyle3’s varied from 36.6% to 51.0%,
and pycdc’s varied from 6.7% to 9.9%. This instability
is intrinsically tied to the instability in Python’s bytecode
across versions, leading to variations in the effectiveness
of specific techniques as well as variation in the overall
difficulty of Python decompilation. In the bytecode-only
datasets (VirusTotal and PyLingual.io), there is additional
variation both in the representation of each version, and in
the specific files that are available in each version.

Decompiler design choices also influence the impact of
the dataset on the decompilation accuracy. In fact, the most
surprising result from Table 2 is that pycdc is the only
decompiler to perform better against VirusTotal than against
PyPI. In our experience, VirusTotal samples are more likely
to contain deep combinations of simple language primitives,
where PyPI samples are more likely to leverage advanced
language features. Despite this interesting twist, pycdc still
had the lowest overall accuracy, even on VirusTotal data. On
the other side of the table, PYLINGUAL scored the lowest on
VirusTotal relative to itself on the other datasets, primarily
due to the size of the functions and the prevalence of deeply
nested exception handling structures, but still maintained the
highest accuracy among the decompilers.

7.3. Equivalence Metric Comparison

Comparison to EMI. In comparison to EMI [15, 16],
which is a relaxation of semantic equivalence that relies on
dynamic testing, perfect decompilation is a strict, statically
verifiable test. This naturally raises the question of whether
perfect decompilation is too strict, falsely rejecting a large
proportion of semantically equivalent but imperfect decom-
pilations. Table 3 summarizes the decompilation results for
PYLINGUAL, uncompyle6, and decompyle3 on the open-
source numpy [41] library in Python 3.8. EMI was deter-



Table 3: Summary of decompilation results for Numpy in Python
3.8. Files that were EMI-only were manually investigated.

Decompiler Perfect & EMI EMI Only Neither No Output
Equivalent Different

PYLINGUAL 145 2 16 53 8
Uncompyle6 72 17 23 64 48
Decompyle3 79 19 37 55 34

Table 4: Comparison between PYLINGUAL and PyFET [17] using
the PyFET’s released reproducibility dataset.

PYLINGUAL PyFET [17]

Version Perfect
Semantic

Error
Syntax
Error Perfect

Semantic
Error

Syntax
Error

3.7 86.6% 6.0% 7.5% 28.4% 59.7% 11.9%
3.8 90.8% 9.2% 0.0% 2.3% 90.8% 6.9%
3.9 96.8% 3.2% 0.0% 82.1% 17.9% 0.0%

mined by decompiling one file, replacing that file with the
decompiled result in the library, then running the included
unit tests.

We find that the false rejection rate of perfect decompila-
tion is low, but non-negligible. For PYLINGUAL, only 2 out
of 147 semantically equivalent decompilations were falsely
rejected by perfect decompilation. The false rejection rates
for other decompilers were higher, with 17 of uncompyle6’s
89, and 19 of decompyle3’s 98 semantically equivalent
decompilations being falsely rejected. The primary reason
for this discrepancy is common formatting choices from
uncompyle6 and decompyle3 that subtly affect the byte-
code, including converting type hints to strings, explicitly
implementing the if/raise behavior of assert statements,
and explicitly calling the complex function instead of using
the native complex number constant syntax. Although the
accuracy improvement in semantically equivalent decompi-
lation is smaller than in perfect decompilation, PYLINGUAL
still substantially advances decompilation accuracy.
Comparison to forensic equivalence. PyFET [17] attempts
to improve the accuracy and scalability of Python decompi-
lation by preprocessing inputs that trigger fatal decompiler
bugs such that the decompilation completes and the result
includes a recognizable “forensically equivalent” artifact.
Some of these artifacts are automatically reversible – the
original source code can be restored from the artifact with
a string replacement scheme. The authors of [17] have
released a set of Python bytecode files that trigger fatal
errors in uncompyle6 [5] and decompyle3 [6], along
with patched versions that have been manually verified to
be “forensically equivalent”. Using these forensically equiv-
alent decompilation results as the output of PyFET (after
reversing reversible artifacts to get as close to the original
source code as possible), Table 4 compares the perfect
decompilation rate of PyFET against that of PYLINGUAL
on those files.

Even using the provided selection of files, which were
chosen to be challenging for existing decompilers and manu-
ally checked by the PyFET authors, we observe that PYLIN-
GUAL provides substantially more accurate decompilation

Table 5: Comparison of decompilation accuracy with and without
the statement corrector model.

With Corrector Without Corrector

Dataset Version Perfect
Semantic

Error
Syntax
Error

No
Output Perfect

Semantic
Error

Syntax
Error

No
Output

CSN
3.8 97.5% 1.8% 0.7% 0.1% 97.0% 2.1% 0.9% 0.0%
3.10 95.0% 3.7% 1.1% 0.2% 94.7% 3.9% 1.2% 0.2%
3.12 93.5% 3.3% 3.2% 0.1% 93.3% 3.4% 3.3% 0.1%

PyPI
3.8 84.1% 6.5% 7.8% 1.6% 80.4% 7.5% 10.9% 1.2%
3.10 81.1% 7.7% 9.6% 1.6% 77.2% 9.4% 12.1% 1.3%
3.12 77.8% 8.1% 12.7% 1.5% 75.0% 8.2% 15.6% 1.1%

PyLingual.io
3.8 59.9% 12.1% 26.8% 1.2% 58.3% 13.3% 28.0% 0.5%
3.10 54.9% 16.1% 25.1% 3.9% 53.6% 16.3% 27.7% 2.4%
3.12 43.5% 9.7% 43.5% 3.2% 43.2% 9.7% 44.2% 2.9%

Table 6: Strawman LLM decompiler accuracy, on version 3.10.

gpt-4o-mini gpt-4o

Dataset Perfect
Semantic

Error
Syntax
Error

No
Output Perfect

Semantic
Error

Syntax
Error

No
Output

CSN 12.0% 84.9% 3.1% 0.0% 20.8% 70.0% 9.2% 0.0%
PyLingual.io 4.8% 79.2% 14.9% 1.0% 13.7% 58.2% 27.2% 1.0%

results. Beyond demonstrating PYLINGUAL’s efficacy, these
results primarily reflect a difference in objectives between
PYLINGUAL and PyFET [17]. PYLINGUAL aims for per-
fect decompilation, which is a strict refinement of program
equivalence that is automatically verifiable. PyFET aims
for forensic equivalence, which is an informal relaxation
of program equivalence that requires manual verification.
Recognizing this difference in objectives, the dramatic eval-
uation result in Table 4 is unsurprising, and highlights that
imperfect decompilation can still be useful.

7.4. Ablation Study

Top-k segmentation ablation. Figure 8 illustrates the effect
of the top-k segmentation search on the overall decom-
pilation accuracy on Python 3.8, 3.10, and 3.12. In this
evaluation, the statement corrector model was not used. We
observe that the impact of the segmentation search is more
pronounced in more difficult datasets, and begins to show
diminishing returns around k = 10, which is the limit used
in our main evaluation in Table 2.
Statement corrector model ablation. Table 5 shows the
benefit from the statement corrector model, which shows an
outsized effect on PyPI compared to the CodeSearchNet and
PyLingual.io datasets. Overall, the effect of the statement
corrector model is marginal, but provides improvements on
a small number of challenging cases.

7.5. Strawman LLM Decompilation

To provide a baseline reference for the ability of lan-
guage models to interpret and decompile Python bytecode,
we referred to [42] to use gpt-4o-mini and gpt-4o [43]
to decompile CodeSearchNet binaries in Python 3.10. Al-
though the dataset and version coverage of this baseline
were limited to reduce evaluation costs, Table 6 clearly
and unsurprisingly shows that off-the-shelf Large Language
Models (LLMs) are less capable of Python decompilation
than the best available Python decompilers. This naı̈ve de-
compilation method simply prompts the LLM to provide the
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Figure 8: Increase in decompilation accuracy due to top-k segmentation searching.

original Python source code for a given xdis [4] bytecode
dump in a zero-shot fashion. Future work may choose to
explore more sophisticated prompting strategies and byte-
code preprocessing steps to improve generic LLMs’ ability
to perform Python decompilation.

8. Case Studies

Here, we compare PYLINGUAL to existing Python de-
compilers by contrasting their results on illustrative bytecode
examples. The accuracy of decompilation was verified via
perfect decompilation (§2). Readers may refer to Table 7 in
the appendix for the full case study results.

8.1. Complex Conditional Expressions

Across our datasets, we encountered cases of complex
conditional statements that can contain multiple expressions
and statements joined together. This is usually a quite diffi-
cult task to approach for current decompilers. Our segmen-
tation model is able to accurately decide which conditional
components should be joined on one line or nested, and
our statement model is capable of translating these complex
boolean expressions into equivalent source code. For exam-
ple, the VirusTotal dataset contains a file (Figure 9) with
nested conditionals and multiple statements. As this sample
is a Python 3.9 bytecode, decompyle3 and uncompyle6,
which only support versions 3.8 and below, produced no re-
sult. However, pycdc fails to correctly segment the boolean
expression, splitting off the last e[2]>e[3] and incorrectly
grouping the terms of the expression for translation.

A similar sample from our CSN dataset for Python
3.7 shows how PYLINGUAL outperforms other state-of-the-
art decompilers in cases with complex conditionals and
control flow (Figure 10). Comparing the results of the
existing decompilers with those of PYLINGUAL, it is clear
that traditional pattern matching approaches are inadequate
for managing complicated conditional expressions. Where
existing decompilers consistently failed to correctly place
the final return statement, PYLINGUAL not only reconstructs
the original control flow, but also correctly places all the
conditional pieces on the same line.

PYLINGUAL’s efficacy in reconstructing complex con-
ditional statements strongly validates the design decision

Figure 9: VirusTotal 3.9 sample with a complex condition.

to dedicate a segmentation module for the bytecode seg-
mentation, which inherently carries crucial control flow
semantics. This focused approach not only enhances the pre-
cision in identifying bytecode statement boundaries but also
highlights subtle, essential control flow semantics. Even if
the segmentation model produced inaccurate segmentations
for the examples above, PYLINGUAL’s top-k segmentation
design (§5.2) provides a robust fallback, adding an extra
layer of error protection.

Figure 10: CSN 3.7 sample with complex condition.



Figure 11: Python 3.7 sample from PyPI of list comprehension.

8.2. Lambdas and List Comprehensions

Throughout the evaluation, we notice that existing de-
compilers often struggle with lambda functions and com-
prehensions. These source-level constructs are implemented
as anonymous code objects that take arguments and capture
values from their surrounding scope. pycdc struggles the
most with these constructs, often including the internal
names of arguments in the comprehensions, rather than their
source-level names from the outer scope. pycdc’s relative
lack of support for advanced Python structures is showcased
in Figure 11. In the same line of code, uncompyle6 and
decompyle3 suffer from a different issue, which stems
from the incorrect translation of short-circuited boolean
expressions. In an attempt to explicitly capture the control
flow of the or condition, the parsing grammars ensured that
the second condition would only be evaluated if the first
condition was false, but failed to capture the wider picture.

PYLINGUAL’s success in these cases can be attributed to
segmenting and translating the entire list comprehension as
one statement while the other decompilers attempt to decom-
pile the statement expression by expression. This mechanism
allows PYLINGUAL to effectively consider the full seman-
tics of the comprehension without creating confusion with
similar bytecode expressions with different translations. We
discuss the current limitations of PYLINGUAL and future
mitigations leveraging new advances in NLP [33] in §10.

8.3. Semantic Error Localization

When PYLINGUAL decompiles a PYC sample, and our
strict equivalency metric (§2, §5.5) indicates that incorrect
semantics were generated, PYLINGUAL is able to report
strict and localized information about where it has failed.
This information gives a reverse engineer using PYLIN-
GUAL a specific source line number and bytecode instruction
offset to focus additional reversing and debugging. In Fig-
ure 12 we demonstrate an example of this error localization

on a VirusTotal 3.9 sample where PYLINGUAL yielded
source code with semantic errors.

Although the problem is clear when comparing the
incorrect source line to the correct manually decompiled
source line (depicted in Figure 13), the difference in the
bytecode would be difficult to notice without an automatic
error detection mechanism. The arguments to BUILD LIST
at offset 434 and CALL FUNCTION KW at offset 440 were
swapped, and the “help” item was removed from the
LOAD CONST at offset 438. At the source level, this is
represented by the choices list being too long, which mis-
aligned the arguments to the run parser.add argument
call. PYLINGUAL’s perfect decompilation verification was
able to identify and locate the exact instructions affected
by the semantic decompilation error. The error localization
facilitates a feedback loop with a human reverse engineer,
which allows “almost perfect” decompilations to become
perfect with a small amount of expert analysis.

9. Related Work

The challenges faced in traditional binary decompilation
research differ significantly from those faced by PYLIN-
GUAL. Traditional binaries are characterized by their stable
Abstract Binary Interface (ABI) and Instruction Set Archi-
tectures (ISAs), as well as aggressive compiler toolchain
optimizations that strip away critical information for source
recovery. In contrast, Python binaries are characterized by
constantly evolving bytecode specifications and rapid, un-
predictable deployment of new language features, but suffer
substantially less information loss from optimizations. The
constant evolution of Python and other High-level Dynamic
Languages (HDLs) demands significant maintenance effort
for their reverse engineering infrastructure.

9.1. Traditional Binary Decompilation

Traditional binary analysis is a well-established research
field due to high demand from reverse engineers who want
to understand binaries without having access to the source
and from security analysts who need to analyze malware
payloads. The field has been extensively explored by both
industry and academia [44, 45, 76, 77]. Despite the avail-
ability of mature, off-the-shelf tools, numerous research
problems related to pushing the limits of decompilation
remain.
Traditional decompilation. Since Cifuentes et al. [46] first
pioneered the field, decompilation research has evolved to
address various practical and theoretical challenges, which
can be primarily summarized into two sub-problems: (1)
statement translation to restore type information and data
dependencies [47], and (2) structural analysis to iden-
tify code blocks and restore control dependencies among
them [46, 48–50]. Structural analysis has more impact on
the performance and usability of a decompiler, so it has been
the primary focus of recent research [48–50].
Neural decompilation. Recent advances in neural transla-
tion have sparked interest in their use for binary analysis and



(a) Original PYC disassembly. (b) Disassembly of decompiled source, then recompiled.

Figure 12: Virustotal 3.9 PYC disassembly comparison to demonstrate error localization utility. Subtle decompilation errors (highlighted)
may be overlooked by manual analysis, but are easily detected by automated strict bytecode comparison.

(a) Sample Equivalence Report.

(b) Line 90 of PYLINGUAL’s decompilation of this sample.

(c) Manual decompilation of line 90 of this sample.

Figure 13: Local error analysis on a VirusTotal 3.9 sample.

decompilation. Although large public code datasets meet the
data demands of NLP approaches, decompilation requires
strict syntax compliance and semantic accuracy, posing new
challenges to natural language translation and complicating
the generation of trustworthy results.

Wartell et al. [51] proposed one of the first ML-assisted
binary analyses, using a predication by partial matching
model to differentiate code from data in x86 binaries. Later,
Shin et al. [52] built a multi-layer RNN network that con-
sumes one byte at a time to predict a byte sequence that
identifies function boundaries. Katz et al. [53] first proposed
an RNN-based model similar to the those used for natural
language translations. However, their work employed a naı̈ve
seq2seq model that struggled to identify PL-specific features

such as function and statement boundaries, number and type
of instruction operands, etc. CODA [54] implements a type-
aware encoder and AST decoder to preserve important code
structures. They also implemented an Error Correction post-
processor to improve the prediction accuracies. Neutron [55]
uses long-short-term-memory (LSTM) models to segment
and translate unoptimized assembly into C code. Similar to
CODA, Neutron relies heavily on mechanical correction of
common model translation errors.

9.2. Reversing and Decompilation for HDLs

The rising popularity of HDLs such as Ruby, Lua,
and Golang, is driving demand for portable packaging and
deployment to support the highly heterogeneous and frag-
mented IoT (Internet of Things) and CPS (Cyber-Physical
Systems) computing sectors. In response, developers and
malware authors alike have minimized external dependen-
cies with architecture-neutral formats, standardized mod-
ules, and adaptable runtime components [56–58]. Compared
to regular binaries directly compiled from low-level system
languages (i.e., assembly and C), HDL families largely
lack reversing support. When dealing with languages that
incorporate an intermediate bytecode representation for their
compiled code (e.g., PYC files for Python and CIL files
for.NET framework), reverse engineers often depend on
incomplete or inaccurate solutions for analyzing malicious
binaries in this intermediate form.
Python decompilers. The two most popular decompilers for
Python binaries are uncompyle6 [5] and decompyle3 [6].
uncompyle6 evolved from early attempts at creating a
decompiler that leveraged the same strategies as com-
pilers. Because bytecode is ambiguous without context,
uncompyle6 uses an Earley parser [78] to generate many
possible parallel parse trees when decompiling bytecode.
decompyle3 is a reworking of uncompyle6 to improve



its overall maintainability, focusing on control flow support
for Python 3.7 and 3.8.

Since decompyle3 first released in 2021 as a fork of
the previous uncompyle6 project, over 10,000 lines of code
have been added to improve performance on Python 3.7
and 3.8, with the most recent release in 2024 still pro-
viding no public support to Python 3.9 or later, although
the maintainer has mentioned private initial developments
to support Python 3.9 and 3.10. The foundational work to
extend support from Python 3.7 to 3.8 goes even further
back to 2019 in the uncompyle6 project; nearly 30,000 lines
of code have since been added to provide maintenance and
improvements to the coverage of Python 3.8 and below.

pycdc [73] is a less popular Python decompiler due to
its limited coverage of language features. However, pycdc
does provide limited support to Python 3.9 and above, which
decompyle3 does not. pycdc attempts to track control flow
structures using a stack, similar to how the Python inter-
preter, and matches bytecode statements against a known list
of patterns. While pycdc has undergone a modest ≈ 4, 000
lines of code modification to support Python 3.9 and 3.10,
the accuracy of the decompilation results is lacking. In §7,
we saw that pycdc was unable to decompile even 25% of
PYC binaries for any evaluated Python version.
Decompilers for other HDLs. Soot [79], designed by
Vallée-Rai et al., provides a framework to decompile bina-
ries written in Java and Dalvik bytecodes. The Soot frame-
work is actively maintained by the open-source community
to stay up-to-date with Java. Furthermore, the framework
supports code reassembly to instrument additional func-
tionalities. Several stable decompilers for the.Net frame-
work [80, 81] are also actively maintained. Although niche
and thus not actively maintained, decompilers also exist
for other HDL families such as Ruby and Lua [82, 83].
Although malware written using these HDLs exists, the
community lacks reliable support for these languages. De-
mands for systematic approaches to fix failures and reduce
maintenance efforts are also high for these decompilers.

10. Discussion and Future Works

Limitations of NLP models. PYLINGUAL faces several
challenges due to its extension of NLP techniques. The
segmentation models’ capacity is limited, struggling with
exceptionally lengthy input bytecode. The capacity of the
statement translation model, defined by its model param-
eters, thus ties directly to GPU memory size. While we
demonstrate that modern transformer models support a large
enough context to process most real-world Python samples,
it is desirable for a decompiler to gracefully handle even
arbitrarily long statements, functions, and files. The context
limitation problem has been and continues to be a subject of
intense focus in the NLP community, and potential solutions
can be adopted from the NLP literature.

Beyond mechanical solutions that decompose or other-
wise simplify the inputs to the segmentation and statement
translation models [17], NLP researchers have been explor-
ing transformer architectures that leverage sparse attention

to handle longer sequences [59, 84]. Because only control
flow statements can induce long-range dependencies in seg-
mentation, future work may improve the coverage of neural
decompilers by incorporating guided sparse attention into
the segmentation model. Combined with a sliding window
approach, new model architectures are a promising direction
for processing long sequences of code.
Data lag for new language features. For models to ef-
fectively learn to segment and translate a given language
structure, that structure must be adequately present in the
training data. Although we have constructed a continuously
evolving dataset using real-world source code from PyPI,
the representation of new language features in the dataset is
dependent on the speed of user adoption of those features.
According to data from the JetBrains Python developers
surveys [60–62], Python 3.9 adoption was only 12% in 2020
but rose to 35% in 2021, until falling to 23% in 2022 due to
Python 3.10’s explosive 45% adoption rate. More research
is needed on the time it takes for the new language features
in each version to gain sufficient representation in datasets
collected from real-world deployment. Future works may
explore meta-learning, super-sampling, and artificial data
generation to reduce the reliance on user adoption of new
features to train effective models.
Automation of control flow reconstruction. To scale across
language versions, PYLINGUAL relies on three compo-
nents that require manual maintenance: (1) version-agnostic
Python disassembler [4], (2) code normalization to mask
variable names and constant values, and (3) version-specific
control flow reconstruction. While components (1) and (2)
demand minimal engineering efforts, due to an open-source
project for the version-agnostic Python disassembler and
the relatively simple code normalization process, the control
flow reconstruction has required significant work and greatly
influences decompilation accuracy.

The growing adoption of bytecode-level optimizations
extending beyond basic block boundaries introduces main-
tenance challenges for PYLINGUAL’s control flow recon-
struction module. Expecting more aggressive optimizations
in future versions, we will develop a GNN (Graph Neural
Network)-based strategy to automatically train pluggable
control flow reconstruction models for new Python releases.
Applying PYLINGUAL to other languages. The direction
of our research hinges on our ability to extend PYC decompi-
lation to other programming languages. While we prioritize
Python binaries, it is essential to provide reversing support
to other HDLs. From our experience with Python, there
are certain criteria that indicate that a language will benefit
significantly from PYLINGUAL’s analysis. These include:
(1) A modular code object structure, (2) A rich source
of source code datasets, (3) Availability of auxiliary or
debugging information, and (4) Language-specific optimiza-
tions. Given these considerations, we’re exploring HDLs
with execution models similar to Python, such as Lua and
Ruby, as prospective candidates for PYLINGUAL’s analysis.
Human-in-the-loop decompilation. Recent work [8, 50]
has begun to scratch the surface of systematically under-



standing the interactions between human reverse engineers
and their assistive tools. Perfect decompilation provides a
mechanism for an automatic decompilation system to recog-
nize and localize decompilation failures to request assistance
from a human reverser, as well as provides direct feedback
to the human when the failure has been resolved. An appli-
cation of this feedback loop is illustrated in §8.3. Future
works may explore the synergistic and iterative relation-
ship between reverse engineers and assistive tooling, which
becomes promising in the context of recently popularized
“copilot” systems powered by generative AI.

11. Conclusion

PYLINGUAL’s innovative design balances traditional bi-
nary analysis principles with data-driven statistical approx-
imations. The rigorous code equivalence requirements of
perfect decompilation address the inability of NLP models to
deterministically comply with strict syntactic and semantic
accuracy requirements in high-stakes domains. Further, for
outputs that are not provably correct, PYLINGUAL auto-
matically localizes semantic errors to aid reverse engineers.
PYLINGUAL represents the first research effort to address
translation instability due to weakly-defined binary inter-
faces and continuously evolving language versions, and
impacts real-world reverse engineers by scaling Python de-
compilation support across versions.

Evaluated against an extensive collection of real-world
datasets, PYLINGUAL achieved a high perfect decompilation
rate of 75% on average across Python 3.6 ∼ 3.12, mark-
ing an average improvement of 45% over SOTA Python
decompilers [5, 6, 73] across four datasets. To promote
progress in this research field, we will release associated
research artifacts, encompassing source code, benign and
malicious sample datasets, and established models, and we
have launched PYLINGUAL as a public online decompilation
service at https://pylingual.io.
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Appendix A.
Technical Details and Online Service

We provide technical descriptions of top-k segmenta-
tion search and corrector heuristics for statement translation
model. Then, we introduce PYLINGUAL online service and
discuss its legal and ethical considerations. Table 7 presents
links to the PYLINGUAL web service for the case study
samples presented in §8.

Table 7: PYLINGUAL decompilation for case studies and code
examples.

Case study analysis PYLINGUAL decompilation

Figure 9 https://pylingual.io/bcfcf97
Figure 10 https://pylingual.io/9973b72
Figure 11 https://pylingual.io/4c5de2b
Figure 13 https://pylingual.io/4c5de2b

A.1. Model Training Configuration

This section contains technical details for the segmenta-
tion, statement translation, and corrector models.
Segmentation. For each covered Python version, the seg-
mentation model follows an encoder-only BERT [29] archi-
tecture, consisting of: (1) a 768-wide embedding layer with
a vocabulary of 30,000 tokens and a maximum position em-
bedding of 2,050; (2) twelve transformer blocks, each con-
sisting of a 768-wide self-attention layer, a 768 wide-dense
layer with normalization, a 768-in 3072-out dense layer with
normalization, and finally a 3072-in 768-out dense layer
with normalization; (3) a 768-in 3-out single-layer linear
classifier. Each model is randomly initialized and initially
trained to perform masked language modeling for Python
bytecode (without the final linear classifier layer) to prepare
appropriate embeddings. This initial training period lasts
for 2 epochs with a batch size of 2 and a learning rate
of 2e-5. The resulting model is then fine-tuned to perform
BIE segmentation using the linear classifier layer, following
the same hyperparameter settings. The segmentation model
architecture has a total of 109,673,475 (≈ 110M) parameters.
Statement Translation. For each covered python version,
the statement translation model is a fine-tuned version of
CodeT5 [30] trained to perform sequence-to-sequence map-
ping between Python bytecode statements and Python source
code statements. The statement translation models used our
custom Python tokenizer (§A.2) to improve the semantic
density of tokens during translation. Each model was trained

for 2 epochs with a batch size of 24 and a learning rate
of 2e-5. The translation model architecture has a total of
222,882,048 (≈ 223M) parameters.
Statement Corrector. For each covered python version,
the statement corrector model is a fine-tuned version of
the corresponding statement translation model, so their ar-
chitectures are identical. For “difficult” bytecode sequences
(§A.4), the training data for the statement corrector is pairs
of ((original bytecode, translation model output), original
source code). The training hyperparameters are the same as
for statement translation, but with a smaller batch size of 8
to accommodate the longer training inputs.

A.2. Custom Python Tokenizer

Taking advantage of the structure of Python source code
and bytecode compared to natural language, we were able to
improve the semantic coherence of tokens by initializing an
off-the-shelf Roberta [29] tokenizer with additional special
tokens for each literal in the Python source grammar [32],
operator name in the Python bytecode specification [31],
and additional common literals introduced during our code
normalization process (§5.1). By integrating the Python
grammar with the tokenization process, there is a closer
match between the tokenized feature-space translation task
and the Python problem space. This tokenizer includes the
relevant tokens for all covered Python versions, enabling
it to be used as a common tokenizer across all of our
statement translation and corrector models. Although the
current version of the tokenizer requires a small amount
of annual maintenance to keep up with Python releases, the
relevant information could be automatically scraped from
the Python documentation with minimal engineering effort.

A.3. Top-k Segmentation Search

To address the limitations of the NLP-based segmenta-
tion module, PYLINGUAL performs a local search in the
space of segmentations, guided by the confidence of the
segmentation model. This often enables the recovery of
a correct segmentation of a code object, when the orig-
inally predicted segmentation contains errors. We assert
that accurately segmenting bytecode streams regarding their
statement boundaries plays an essential role in achieving
accurate decompilation results.

Here, we describe the family of m-deep-top-k search
strategies, from which PYLINGUAL’s 2-deep confidence-
guided segmentation search was derived. Any segmentation
mechanism produces, for each disassembled bytecode in-
struction, (1) an indication of if the instruction begins a new
statement, and (2) a set of features (e.g., the confidence score
from the corrector model); the sequence of these outputs for
a given code object constitutes a segmentation.

In an m-deep-top-k strategy, we map the segmentation
to a binary string s of length n, where each bit corresponds
to one instruction, and is 1 if the corresponding instruction
begins a new statement. The search then proceeds over a
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set of “corrector masks”, which are also binary strings of
length n, where a bit is 1 if the segmentation decision at
the corresponding instruction should be flipped. To generate
a corrected segmentation s

′ with a corrector mask c, we
can simply compute s

′
= s ⊕ c. The “search distance”

m represents the maximum number of errors that can be
corrected by the search, and is therefore the maximum
number of 1s in the corrector masks that are considered. The
flexibility of m-deep-top-k searching stems from strategy-
specific priority functions, which establish a total ordering
over the corrector masks; in PYLINGUAL’s case, we pri-
oritize exploration in order of least-confidence, such that
the statement boundaries that the model is unsure about is
altered first. Finally, k provides a constant upper bound on
the number of variants to search, ensuring that not too much
time is wasted searching low-priority candidates.

Because only binary strings with at most m ones are
considered, the total search space is

m

∑
k=0

(nk) = 1 + n +
n(n − 1)

2
+ ⋅ ⋅ ⋅ +

n!

m!(n −m)!
where n is the number of instructions being segmented. The
asymptotically dominant term is n!

m!(n−m)! , for which we
can show that n!

m!(n−m)! < n
m. Therefore, the total search

space is O(nm), which is a significant reduction from the
original exponential search space of all length n binary
strings. The key strength of m-deep-top-k searching is that
when the initial segmentation is expected to be close to a
correct segmentation, a low constant m can include a correct
segmentation with high probability in a polynomial slice of
the exponential search space.

A.4. Statement Corrector Heuristic

Heuristically, “difficult” statements: (1) contain type an-
notations or default arguments; (2) are comprehensions; (3)
contain four or more function calls, jumps, or sequence
creations; or (4) contain six or more binary operations.
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Figure 14: Uploads to PyLingual.io since November 2023.

A.5. PYLINGUAL Online Service Usage

In November 2023, we began hosting PYLINGUAL
online service to improve accessibility to Python decom-
pilation tools. Since then, word slowly began to spread,
and a steady stream of users began to visit the site to
decompile Python bytecode. Figure 14 shows the daily
upload trends since the service’s launch. The first three large
spikes were caused by ambitious users who scripted out
a bulk decompilation of a full project; for those projects
that appear to be private intellectual property, we are in
communication with our University’s legal department to
ensure responsible disclosure. The fourth and longest spike
in usage coincided with a Capture-The-Flag (CTF) event
which involved Python reversing.

PYLINGUAL’s growing traction in the community [13,
14, 39, 40], along with over 7,500 GitHub stars across
uncompyle6, decompyle3, and pycdc, demonstrate clear
and present demand for Python decompilation tools. How-
ever, even with PYLINGUAL improving the perfect decompi-
lation rate by 17.1% to 45.5% over the next best decompiler
on files that real users want to reverse engineer, there is still
a large gap for improvement in the future.
Data collection and ethical considerations. We discussed
relevant concerns and perspectives with our university’s
legal department and IRB to design PyLingual.io’s data
collection and handling procedures. To support basic op-
erations, the web service logs source IPs and timestamps
of API calls, and stores uploaded PYC files to be served
back to users. Our university’s IRB does not consider these
items to be personally identifiable information, and therefore
this research does not constitute human subjects research.
However, we recognize that this research is supported in part
by PYC files contributed by human users, so we have taken
appropriate measures to respect their privacy and anonymity.
The web service prominently presents a notice that uploaded
files may be used for research purposes, which must be
accepted before using the service. The uploaded files and
decompiled source code may be automatically deleted at
the user’s request using the red delete button in the top-
right corner of the decompilation result page. The web
service does not attempt to identify users beyond logging
IP addresses associated with API calls, and maintains no
cookies or session information.



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper proposes a new technique in the decompi-
lation of Python bytecode: a hybrid, ML-and-PL system
that intrinsically adapts to changes in the Python language
as the latter evolves. This adaptability enables PyLingual
to maintain its efficacy across 7 versions of Python (the
two other leading decompilers only support a union of
three, older Python versions) while maintaining a significant
success rate.

B.2. Scientific Contributions

• Provides a New Data Set For Public Use
• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) The authors have explored and addressed a long-
standing problem in Python decompilation.

2) The reviewers appreciated the careful integration of the
ML and PL components of the pipeline, and observed
that it might work on other HDLs.

3) The availability of the source and service of PyLingual
is a good contribution for future research.
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