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ABSTRACT
Tracking user activities inside an enterprise network has been a
fundamental building block for today’s security infrastructure, as it
provides accurate user profiling and helps security auditors to make
informed decisions based on the derived insights from the abun-
dant log data. Towards more accurate user tracking, we propose
a novel paradigm named UTrack by leveraging rich system-level
audit logs. From a holistic perspective, we bridge the semantic gap
between user accounts and real users, tracking a real user’s activi-
ties across different user accounts and different network hosts based
on causal relationship among processes. To achieve better scalabil-
ity and a more salient view, we apply a variety of data reduction and
compression techniques to process the large amount of data. We
implement UTrack in a real enterprise environment consisting of
111 hosts, which generate more than 4 billion events in total during
the experiment time of one month. Through our evaluation, we
demonstrate that UTrack is able to accurately identify the events
that are relevant to user activities. Our data reduction and compres-
sion modules largely reduce the output data size, producing a both
accurate and salient overview on a user session profile.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.

KEYWORDS
Audit Logs; Forensics Analysis; User Tracking

ACM Reference Format:
Yue Li, Zhenyu Wu, Haining Wang, Kun Sun, Zhichun Li, Kangkook Jee,
Junghwan Rhee, and Haifeng Chen. 2021. UTrack: Enterprise User Tracking
Based onOS-Level Audit Logs. In Proceedings of the Eleventh ACMConference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00
https://doi.org/10.1145/3422337.3447831

on Data and Application Security and Privacy (CODASPY ’21), April 26–
28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3422337.3447831

1 INTRODUCTION
Nowadays, cyber-attacks have been becoming more sophisticated
and stealthy. In an Advanced Persistent Threat (APT) attack, an
attacker may lurk in the target network for more than half a year
on average, escalating and maintaining the access privilege without
being caught [40]. As a result, there is an increasing demand of
user tracking inside an enterprise network, in order to improve the
visibility for the network monitoring, and help security analysts
to make informed decisions on the detection of insider attacks and
targeted APT attacks. A recently enabled paradigm in the security
industry, called User Behavior Analytics (UBA) [38, 39], is built
upon this foundation. UBA categorizes a range of techniques that
keep monitoring user activities and identifying those that deviate
from normal user sessions. While UBA is a rather broad concept
that can be applied to many scenarios on a different level, granu-
larity, and scope, its fundamental building block is to accurately
identify and model user activities. Capturing user activities with an
inaccurate or incomplete view could result in incorrect detection
or analysis.

Towards more accurate user modeling and verification, contem-
porary UBA approaches attempt to fuse data from different data
sources for creating a more comprehensive risk profile [33, 41].
Though they are useful in many scenarios [33, 39, 41], an inher-
ent limitation is that they all lack a holistic view on systems since
data are collected from only a couple of security-sensitive appli-
cations, such as firewalls and proxies. Under such a setting, many
meaningful events could be missed, not to mention the difficul-
ties of correlating data with different syntax and semantics from
a variety of sources. A natural approach would be to leverage log
data at the operating system (OS) level, which can record data for
all applications under homogeneous syntax and comprehensible
semantics. Such an audit log system is widely deployed in many se-
curity infrastructures [22–24, 26, 27], mainly for forensics purposes.
SLEUTH [18] and HOLMES [29] leverage system logs to identify
APT attacks based on abstracted security sensitive activities: “tags"
for SLEUTH and “Tactics, Techniques and Procedures" (TTPs) for
HOLEMES.
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In this paper, we present a novel user tracking system, named
as UTrack, by leveraging the rich system log data to universally
monitor user session activities. In addition to focusing on identify-
ing, consolidating, and scrutinizing security sensitive events [18,
29], UTrack is user-centric. UTrack does not pay more attention on
pre-defined “sensitive" read or write. Instead, the goal of UTrack is
to present a user’s activity profile accurately and concisely, such
that more domain-specific behavior can be audited. For example,
an employee copying a large amount of digital assets from the
company should be known by UTrack.

We identify and tackle twomajor challenges. The first is to bridge
the semantic gap between user accounts and human users in both
in-host and cross-host scenarios. This is done by tracking causal
relationship among processes through the user session root and
correlating network events to identify network control channels.
The second challenge is to address the “needle in a haystack” prob-
lem stemmed from the huge volume of log data through a variety of
data reduction techniques. Unlike many previous works on log data
reduction [25, 46] that aim at information-lossless reduction, our
data pruning approach is to prune data that may carry meaningful
information but are out of the scope of user activity tracking.

We deploy UTrack in an enterprise network that comprises more
than 100 hosts running either Windows or Linux operating systems
with real users. The users are well aware of the setup. This is a
general setup among many enterprises that the company devices
are actively monitored. We manage to process log data from all the
hosts on a single machine, and demonstrate that UTrack is able to
accurately identify and concisely present the events that represent
activities of a real user inside the network in a human-consumable
fashion.

In summary, we make the following contributions.

(1) We develop a newuniversal user trackingmechanism (UTrack)
based on OS-level audit logs. UTrack aims to bridge the se-
mantic gap between human users and computer user accounts
by identifying and associating system events that appear in
different user accounts and different hosts but belong to a
single user session.

(2) We apply effective data reduction methods on user session
profiles to achieve a scalable and salient presentation. The
reduction mainly involves detecting interactive processes
and modeling common data patterns.

(3) We implement UTrack in a real enterprise environment, with
data collected from more than 100 hosts. Our evaluation re-
sults show that UTrack is accurate and concise in presenting
user activities. UTrack scales well with a low resource con-
sumption.

The rest of the paper is organized as follows. Section 2 describes
the motivation and challenges of an OS-level log based universal
user tracking system. Section 3 presents system overview. Section 4
elaborates how UTrack tracks user sessions across different ac-
counts and different hosts. Section 5 presents various techniques
UTrack adopts to pinpoint relevant events. Section 6 details the
implementation and evaluation of UTrack, and Section 7 discusses
more use cases. Section 8 surveys related works, and finally, Sec-
tion 9 concludes the paper.

2 MOTIVATIONS AND CHALLENGES
2.1 Motivations
Contemporary user behavior monitoring is mostly done on dis-
parate applications and services. However, such a methodology
has multiple drawbacks that limit the usability of the monitoring
system. The first drawback is the lack of completeness. In these
systems, only a small portion of user activities are recorded and an-
alyzed, since the logs are only generated from applications that are
usually perceived to be of strong security indication, for instance, a
firewall, a web proxy, or a sensitive database service. All other user
activities are not actively monitored. However, a successful attack,
especially an APT attack, usually comprises many individual steps.
The traces of each step may be buried in seemingly less interesting
events that are not recorded by applications. By connecting these
dots, one may detect an intrusion that cannot be identified by con-
ventional user behavior analytics. In contemporary user tracking
schemes, the auditor lacks this holistic view on the entire system.

The other limitation is the difficulty of correlating log data. Data
collected from different services and applicationsmay be of different
formats, granularity, and semantic levels. Parsing and correlating
data from different sources is very challenging. As a result, data
from individual sources are independently handled and analyzed in
many cases. Shashanka et al. [33] attempted to associate subjects
from different data sources, such as different IP addresses and user
accounts. However, the capability of such an association is limited
to a small scope, where the subjects are tightly bounded. Therefore,
the inspector lacks view on the connections among critical pieces
of puzzle from all data sources.

System Opportunities: A universal user activity tracking sys-
tem, which monitors activities of all users inside an enterprise
network, is very useful to resolve or mitigate the aforementioned
problems. However, recording all activities of individual users in
the entire network may incur significant system overhead. To bal-
ance the trade-off between system overhead and data granularity,
we leverage an OS level log system to collect data from each host
inside a network. The OS level log system collects low level system
objects, such as processes, files, and network connections, which
largely preserve the running states of a computer at a certain time.
Thus, it can be used to accurately reconstruct the causality among
objects with clean semantics. Meanwhile, the data volume is at a
manageable level. Nowadays, many enterprises have deployed such
a log system for forensics purposes [22–24, 26, 27].

2.2 Challenges
2.2.1 Accurate Modeling of User Behaviors. When processing audit
logs, a user account is often considered equivalent to the user
itself. This is mostly true in some high-level applications, such as
Facebook and Twitter. However, the assumption no longer holds
when it comes to low-level OS events.

Unlike application-specific logging that is clearly defined and has
much higher semantic awareness, a generic OS-level log system
monitors events with respect to individual user accounts. In an
enterprise network, a user may have multiple user accounts, and
a user account could be accessible by multiple users. For instance,
a network administrator could access both its personal account
and the root account on a web server. The web server may also



Figure 1: Users and User Accounts – an Example

be managed by several system administrators. As observed in our
network, the discrepancy mainly comes from the following three
scenarios.

Account TransitionManaging account privilege and ensuring
proper isolation among different privilege levels are essential to
an operating system. However, user accounts with lower privilege
sometimes need higher privilege to accomplish certain tasks, which
is mainly done by 2 ways: (1) setting the UID of a process (e.g.,
“ping" command) or (2) having a higher privilege account to do
the task (e.g., through “sudo" or “su" commands). Thus, a simple
task done by a single user may involve several user accounts, and
the same account may also be involved in activities performed
by different users. A more comprehensive example is shown in
Figure 1. In this example, two users Alice and Bob access a same file
“secret.txt." However, from the perspective of the operating system,
the secret file is indeed accessed by two “vim" processes of the
“root" account. Furthermore, whoever is granted the root privilege
is able to interact with the system on any other account’s behalf.
Although this does not usually happen in normal operations, it
is possible that an attacker exploits this system trait to mask its
malicious behaviors.

System Service. In a typical operating system, there are many
applications and services running in the background. Meanwhile,
many system accounts are created in the sense of security groups
to achieve a finer granularity of access control for these services.
Although these accounts do not represent any individual user, they
are delegated certain tasks by other users. Two examples, “sshd"
and “postgres processes", are shown in Host 2 in Figure 1. In this
case, the PostgreSQL database server receives a request of accessing
the database, and in response, the server daemon creates a child
process to process the request. All these activities at the database
server are recorded as from the account “postgres", regardless of
the real user that is in fact accessing the database.

Credential Sharing It is possible that a same account is shared
among multiple real users. A typical scenario is the “root" account
on a server, which may be managed by several developers or ad-
ministrators. Therefore, it is important to find the real performer
of an event, especially when multiple real users log into the system
using the same account.

In general, there exists a semantic gap between user accounts
and human users. Solely relying on the user accounts to track the
behavior of a user is not reliable as it lacks proper linkage of user
account transition and service account delegation. We realize this
semantic gap, and discard this intuitive but invalid assumption in
our user tracking system. To clearly set boundaries between the
two concepts, thereafter, the term “user" always indicates a real
human user, while the term “account" always indicates a user (or
system) account in a computer system.

2.2.2 Identifying Data Triggered by Users. The other challenge we
face is to sift out data that are directly related to user behaviors. We
observe that only a small portion of the data are triggered by direct
user interactions with the computer, and others are spontaneous or
scheduled system events, such as automatic updater and cron jobs.
However, human interactions are the natural target of a user track-
ing system. In light of this, we attempt to identify system events
that are triggered by users’ actual interactions, which achieves a
much higher scalability and cuts off unnecessary distractions for
security auditors. However, for cleaner data semantics and resource
conservation, OS level log systems usually only record the causal
relationships among primitive system objects, such as processes,
files, and sockets. They do not usually keep track of the operations
on I/O devices, such as a click on the mouse or a tap on the key-
board. Without such information, it becomes non-trivial to identify
events stemmed from users’ interactions. To achieve our goal, we
follow the lineage of the UI management components to identify
possible processes that have an open interface to the users and rely
on many useful features to determine interactive processes.

We also need to address the semantic gap between the actual
high-level user behaviors and low-level system interpretations. In
many cases, a simple operation from a user may result in a large
number of system events. Though these events are indeed triggered
by the user’s behavior, they carry little information as most of
the steps are highly repetitive and predictable. To eliminate this
redundancy, we try to model file sets that are frequently accessed
by processes, and only record the events that do not fit in the model.
In addition, we also model repetitive execution “branches" of a
process and compress these repetitive ones.

3 SYSTEM OVERVIEW
Nowadays, many organizations have started to deploy an agent
on each host in their enterprise networks. UTrack works under
the same context of these forensics-purposed OS level log systems.
Three types of system objects (process, files, and network sockets)
and their interaction events (e.g., a process creating a child pro-
cess or reading from a file) are recorded. Each event also carries
attributes that describe the activity, such as the event time, user
account, file pathnames, and socket IP addresses, etc.

UTrack aims to help a system auditor to understand the activities
of users inside an inter-connected enterprise network by associating
both in-host and cross-host activities performed by the same user
in a specific user session. The input to UTrack is a data stream
collected from all hosts, and it can be either a real-time stream or
an offline history database. Generally, it consumes the data from a
start time (𝑇𝑠 ) to an end time (𝑇𝑒 ), and outputs user session profiles
to describe the activities of a user session within the time period. If
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Figure 2: UTrack Overview

the data is an online stream, the end time𝑇𝑒 is set to a distant future
time. The user session profile is represented in a forest structure,
and the time is usually set in terms of weeks, days, or hours in
different use cases.

Most forensics techniques consider a system object, such as an
identified trojan process, as a Point of Interest (POI), and aim at un-
derstanding the provenance or impact of POIs. In contrast, UTrack
attempts to understand the behavior of a user in a session. In other
words, the user itself is the POI. In most cases, the behavior of a user
is much more complex to describe than a single attack incidence in
the system. Similarly or even worse, UTrack suffers from the same
data explosion problem, which makes it difficult to focus on the
real interesting events. Thus, it is imperative for UTrack to identify
and keep the most relevant data, which can also help save system
resource.

Figure 2 illustrates an overview of UTrack. UTrack consumes a
data stream of log events from the aggregator, which receives, sorts,
and sends out the data from the agent-enabled hosts. The first task
of UTrack is to construct user session profiles by correlating both in-
host and cross-host activities, mainly relying on the process lineage
and network event matching. However, this session profile contains
a large amount of system-generated data that may not be directly
related to the user’s operations, but can easily overwhelm other
interesting events. To mitigate this issue, we apply interactiveness
detection on the user session profile to identify the processes that
have actual interaction with the user. This step directs us to the
events that are more relevant to user tracking. We also model the
files, network connections, and “sub-branches” of the interactive
processes to further compress the low-entropy events. The output
of this step is a more salient session profile, which can be directly
construed by human auditors or be inputted to further security
measures.

UTrack works in an online fashion. It gradually builds the user
session profiles while consuming system events on the fly. It is
important for a UBA system to promptly analyze the data, so that
anomalies can be identified in their early stage and triaged to pre-
vent further damages. On the other hand, UTrack can also work
offline in forensics analysis by reconstructing the data stream from
the log database. In order to facilitate this feature, we build a data
replayer to replay the history data from the database, which is
detailed in Section 6. This data replaying tool is also useful on
implementing, debugging, and evaluating our user tracking system.

Note that UTrack does not aim to replace conventional forensics
techniques, such as backtracking or forward tracking. Instead, it
is indeed complementary to those techniques to better secure an
enterprise network. Nowadays, it is a common case that people
do not really make good use of big data, and a large amount of
collected data remain in the warehouse without generating any
useful insights. UTrack demonstrates a new perspective to better
leverage the collected rich system data for system security and
management purposes.

4 UTRACK EVENT ASSOCIATION
UTrack is capable of tracking users across an enterprise network by
linking events from different hosts. Note that we no longer depend
on the owner of the process (i.e. the user account) to determine the
real performer of an event. Instead, the process owner is only used
as side information to give a hint of who the performer might be.
In the following, we first introduce the tracking mechanism on a
single host and then extend it to the cross-host scenarios.

4.1 Tracking In-host User Activities
4.1.1 Process Lineage. Modern operating systems usually main-
tain all alive processes in a tree structure. For example, in Linux,
every process, except the init process, is forked by a parent process.
This parent-child relationship widely exists among processes and is
useful to determine the performer of most system activities. Specif-
ically, we consider the user of the child processes to be the same as
that of the parent process, unless we have a special reason to cut the
lineage and attribute the parent and children to different sessions.
For instance, a user might open a Bash terminal and run the “ls”
command in the terminal. Since the “ls” command is executed by a
child process forked by the bash process, UTrack considers both
processes to be performed by a single user.

This parent-child relationship is a fundamental building block
of many forensics analysis techniques [22–24, 27], which usually
expand the investigation from POI, i.e., the detected point of an
attack. Timing is also considered to mitigate the possible depen-
dency explosion and find the most relevant events. In contrast,
UTrack tracks all the parent-child relationships among processes
for constructing a more complete user session model.

We do not keep track of file data control flows, which are usually
considered in forensics techniques. This is because when a process
has written to a file, the file has a causal relationship with all the
processes that read the file afterwards; however, this causal relation-
ship is out of the scope of user tracking where the user activities
are the target. Furthermore, it introduces too many dependencies
that may unnecessarily complicate the analysis.
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4.1.2 User Log-on Sessions. Since one OS usually structures all its
processes in a tree (or forest in Windows), when activities from
multiple users are recorded in a host, it is far from adequate to solely
rely on the process lineage for tracking each user. Thus, we must
find a way to attribute related nodes to different users. A critical
observation is that a user must have an interface to interact with
the computer, and usually the first step is to log on the computer
for user authentication. In addition, the OS usually organizes the
processes under one user log-on session in a tree structure, and
normally there is a root node as the ancestor of all processes created
in the user session. We call this node a session root. Figure 3 shows
an example of Linux instance. Each user logging in the system has
a corresponding session root (i.e., node 𝑠1 and node 𝑠2), which is
usually a child process of a running service. Their activities (for
instance, open an application) are reflected in the subtrees under the
session root. UTrack utilizes session roots to identify the activities
of each user. It brings us two benefits. First, it helps to separate
processes and activities triggered by users from those generated
by the OS or system services. Second, it can differentiate activities
among multiple users who have logged on the host simultaneously.

UTrack identifies session roots from several known patterns. For
a normal user, the most common way to interact with the com-
puter is via a Graphic User Interface (GUI). Even command line
interactions are included since the terminal window itself is created
in the desktop environment. For example, in Linux, the X display
manager (a process usually named *dm) manages the login screen
and organizes a user session in child processes. In our experimental
environment, the most common display manager is lightdm, and
thus the session root in this case is a lightdm session child with a
session ID. When users log on a server through virtual consoles or
no X server is available on the server, the session root is /sbin/login,
which is a child of the system init process. It is even easier for
Windows, as it is a GUI-based OS and the user interaction with the
OS is usually through the GUI. We determine the windows process
“winlogon” as the session root, since it initiates the user authenti-
cation process and becomes the root of the desktop environment
when the login succeeds.

Remote logins, such as through ssh and telnet, are envisioned as
user cross-host activities since events from multiple hosts need to
be correlated to track the relations. We elaborate how we handle
cross-host activities in Section 4.2. When logins are from hosts
that do not have an agent installed or the login happens before
the tracking start time 𝑇𝑠 , we identify session roots based on the
service pattern. For example, the ssh daemon creates a dedicated

shell for whoever has successfully logged on the computer via ssh.
As such, the dedicated shell is considered as the session root.

4.2 Tracking Cross-host User Activities
In an enterprise network with many inter-connected hosts, one user
may need towork on, or request resources and services from servers.
It is critical to track the cross-host user activities in order to achieve
a better coverage than local-only tracking. A number of previous
works have been developed to help understand how a request is
processed in a complex distributed system using middleware or
application level instrumentation [5, 37], statistical inference [2, 31],
or system call log and analysis techniques [32, 36]. However, they
all cannot accurately work under generic-purposed OS level logs.

We propose to track cross-host user activities based on one key
observation that after receiving remote requests, a server will act
on behalf of the requester. Most servers have a daemon listening to
incoming requests and processing the requests accordingly. There
are two types of server architectures, namely, event-driven servers
and worker-based servers. For the event-driven servers, since a
thread could handle multiple incoming requests in a non-blocking,
interleavingmanner, it is hard to correlate a remote request with the
corresponding activities of the server without specific assistance
from the server. Therefore, our main focus is on the worker-based
servers, where a network request is solely handled by a worker.
Worker-based servers are popularly used in enterprise networks
with a moderate number of users due to the ease of coding and
maintenance. A worker-based server may support two working
modes, namely, on-demand worker creation and a pre-allocated
worker pool. As an example of the first mode, sshd daemon accepts
a remote network connection, and creates an interactive command
language interpreter process, such as a bash terminal. Thereafter,
the newly created command interpreter process is controlled by
the requester, and any activities performed by the process should
be attributed to the requester, regardless of the user account that
owns it on the server. We call this process a delegate of the remote
user.

It is more tricky to handle the worker pool mode. In UTrack,
one process node in a user session completely belongs to the user.
However, it does not fit well with the mode of a worker pool, where
multiple long-living workers are pre-created and each worker only
dedicates a partial of its lifetime for a network request. In order to
accommodate such a case, we introduce a new notation – virtual
process – to model a span of the worker’s lifetime. When a worker
begins to work on a requester, we create a new node (i.e., the
virtual process) in the user’s model, and the new node records
all the activities of the worker during this time. We illustrate this
process in Figure 4, where two users make requests to a server at
different times. The server dispatches the same worker to access
two different files, 𝑓1 and 𝑓2. A virtual node is created to represent
the time lapse that a worker is processing each request. Eventually,
the user model is constructed with each user associated with its
own virtual process, which carries all data during the time when
the real worker handles the individual request.

To track cross-host user activities, the first step is to find the com-
munication channel between the server application (i.e., responder)
and the user-controlled application (i.e., requester). Next, we try
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Figure 4: Virtual Process

to identify a worker for the request using a rule-based method. In
both worker modes, we observe that after establishing a network
channel as a connection acceptor, a child process or a sibling (when
the listener and workers are siblings) of the server process immedi-
ately accesses the same network channel and generates a number
of events. Based on this pattern, we can determine the worker and
attribute all the activities of the worker to the remote requester.

4.3 System Cold Start
UTrack consumes data from agents during a pre-set time period
to help understand the user sessions; however, it may encounter
the cold start problem, namely, the history data is not available and
the agents report events on scattered processes. If so, the linkage
among processes may be missing. Since UTrack relies on the causal
relations to identify user sessions, it requires to reconstruct these
relations between processes. To address this problem, the agent
periodically collects a system snapshot that stores the child-parent
relationship among them. We use this information to reconstruct
the causality relations among stand-alone processes and further
extract user sessions in the reconstructed process tree. Note that
the parent-child relationship recorded in the snapshot may not be
coherent with that generated by UTrack, due to possible process
delegation, user session identification and isolation, or the adoption
of orphaned processes, etc. This discrepancy is in fact beneficial
to our user tracking scheme. For instance, if a user starts a system
service during the tracking period, the system service is regarded
spawned by the user, and the activities of the service can be attrib-
uted to the user. However, if the tracking period is after the system
start time and the service daemon is adopted by the “init” process,
then the service becomes a part of the operating system and cannot
represent any user. As such, we only reconstruct the parent-child
relationship when the child process has no existing parent in the
UTrack model.

4.4 Scope
UTrack aims to connect events that are cross-host and cross-accounts.
However, there are cases where UTrack cannot handle. For instance,
it could fail to identify causality among processes due to inability to
track IPC mechanisms, such as shared memory and shared files. It
also cannot handle the event-driven servers, like those run NGINX.
Similar limitations can be found in previous works [6, 32, 36].

5 PINPOINTING USER ACTIVITIES
After correlating activities of users regardless of the process owner,
UTrack collects user session profiles that keep track of all processes,
files, and sockets in the memory during the entire tracking period.
As a result, the generated data can become very large, and interest-
ing events may be buried in piles of less-relevant data. Therefore, it
is essential for UTrack to identify and keep only relevant and useful
events. Redundant data must be pruned to release the pressure of
huge system resource demand and to keep the security auditor
from unnecessary distractions.

When conducting data pruning, we stick to the user-centric
mentality by sifting out the events that are directly related to the
user’s interaction with the computer system. This is because that a
user session profile contains a collection of processes that are only
used to facilitate user or system operations. For example, Ubuntu
provides a number of tools and services, such as GNOME Virtual
File System(gvfs) for I/O abstraction, update-notifier for newer
version checking, zeitgeist for logging user activities, etc., which
are less relevant to user’s actual behaviors. In contrast, interactive
processes are the processes that a user interacts with, such as a
Bash shell or UI-based programs like Firefox, Notepad, etc. The
behavior of interactive processes is a genuine reflection of the user
operations. However, it is a challenge to identify those interactive
processes from our OS level logging information, which does not
include any user actions, such as mouse clicking or keyboard in-
put. UTrack relies on passive observation and prediction to find
interactive processes, and multiple features have been identified to
help distinguish interactive processes from other processes.

In addition to the interaction-oriented sifting, the data can be
further compressed due to the highly repetitive patterns found
in processes and files. We observe that the interactive processes
are prone to generate sub-processes “branches” for different tasks.
These branches could be similar to each other, regarding to the
executable names, arguments, and files that are read. In many cases,
these monotonous data can easily dominate a session profile and
occupy over 90% data of the user profile. To address this issue, we
model both the activities of an interactive process and the common
files that are read by each executable, which significantly reduce
the complexity of the user session profile.

5.1 Interactiveness Detection
The purpose of interactiveness detection is to find user-triggered
events. We consider user-triggered events to be events directly re-
sulting from a user action, such as opening a file using Notepad, etc.
It should be noted that technically, all events are results of human
user activities, since background procedures and processes, even
the operating systems are installed by the user. However, since
these processes are mostly regulated and expose behaviors dual to
bots, we consider them to be non-user-triggered. Conceptually, we
envision this procedure being similar to find bots/crawlers in a net-
work, where the bots are essentially programmed by human users,
but they expose very different behaviors and have little relation to
active genuine users.

The interactiveness detection relies on passive observation of the
OS events, so it faces several noteworthy challenges. First, passive
observation is believed to be less accurate than active detection



solutions, such as Catpcha [34, 44]. Second, we do not have a spe-
cially tailored log system as those used in bot detection [13, 45],
or any side information such as social graph [7, 9, 13, 43]. Lastly,
system level events are low-level data whose semantic meanings
are harder to derive. Sometimes, we need to associate other related
events to truly understand the actual user operations.

To categorize unknown processes, we develop a machine learn-
ing approach that uses a number of useful features to distinguish an
interactive process from other processes. Note that we need to keep
the actual activities that are usually represented by child processes
of an interactive process. For example, an interactive shell may run
many commands, which is executed transiently. These commands
are not considered interactive processes. However, they represent
the user’s activities and should be studied.

An important and new feature we use is the entropy of activity
batches. A fundamental observation is that the interactive processes
have irregular activities, due to human involvement. Thus, a process
performing tasks at a fixed time interval is unlikely to be controlled
by a real human user. However, treating each individual event as
a task is problematic since a single task usually constitutes many
steps and events. As a solution, we preprocess all these events that
are generated by the process to form a group of event batches, in
which each batch represents a high-level task or operation. A batch
consists of a group of events where each pair of adjacent events
has an inter-arrival time of less than a threshold 𝑇 . 𝑇 should be
carefully selected since it may result in leaving all the events into a
single huge batch when it is too large, or losing the causality among
events that are generated from a single task when it is too small.

We envision the time interval between two consecutive activity
batches as a random process and decide if a random process is
regular by computing the entropy rate based on empirically learned
probability distribution [8, 12]. UTrack computes only the first order
and second order entropy. It is expensive to calculate even higher
order entropy, which may need prior knowledge to determine a
probability distribution. Also, we observe that the first and second
order entropy can achieve a satisfactory result.

5.2 Non-interactive Process Pruning
Instead of targeting at information-lossless pruning [25, 46], we can
afford to remove less interesting data points when coping with our
specific goal of user activity tracking. However, it does not mean
we do not track other processes. Actually, we keep track of all alive
processes that have any interaction with interactive processes or
become interactive processes. The processes we pruned are those
that do not have any lineage with an interactive process. In general,
most processes that are not in a user session are pruned since they
are system-triggered events.

For the processes in a user session, if they are not related to any
user interactions, they are also pruned. We develop an online algo-
rithm to prune those processes using a bottom up, and backward
propagation method. The pruning starts from the leaf process when
the process is ended. If the leaf process can be pruned, it is removed
from the child list of the parent process, and the parent process will
be further checked to see if it can be pruned after the removal of
its child process.
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Figure 5: Data Modeling

5.3 Data Modeling
The essence of identifying interactive processes is to find the activi-
ties of processes, since they are likely the direct results of the user’s
operations. Therefore, all activities of the interactive processes
are preserved in our user session profile. Due to its long-living
and interactive nature, an interactive process usually has many
sub-process branches representing user activities. However, these
branches could be highly repetitive due to multiple reasons. First,
even interactive processes may have periodic routines for updating,
synchronization, etc. Second, user activities can be repeated. For
instance, a user may run “ls” command many times in a terminal,
and many commands intrinsically invokes “ls”. Third, there is a
large gap between user operations and the interpretations of the
computer system. Therefore, a single, seemingly atomic user opera-
tion may result in a large amount of low-level events. For example,
when opening a Firefox browser, we observe that a significant por-
tion of events are repetitive to serve the same low-level purpose,
such as checking the system time or OS version.

There is a large room for the improvement on salience of a user
session profile by modeling and compressing the files accessed by
processes and the branches of interactive processes, respectively.
Based on the observation that many processes with the same exe-
cutable name and same arguments (e.g., Chrome.exe type=renderer
. . . , we call them “mainexec”) may access a similar set of files, we
are able to model commonly accessed files under a mainexec, and
record only the difference. An example is shown in Figures 5(a)
and 5(b). We notice that both mainexecs 𝑒1 and 𝑒2 access a common
set of files ({𝑓1, 𝑓2, 𝑓3}), which can be abstracted by a model (𝑚1).
This model-based technique has also been used in Arnold [11] to
reduce instrumentation overhead.

Figures 5(c) and 5(d) show that the session profile can be further
compressed if some branches are identical. Interactive processes
often have identical branches that could easily overwhelm the au-
ditor. Therefore, we can compress these identical branches by only
recording the timing information and the number of occurrences.
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5.4 Presentation Simplification
Different from conventional backtracking or forward tracking of an
attacking incident, the session profile produced by UTrack describes
a user session. Thus, the session profile becomes unavoidably larger
and cannot be further compressed since all data points carry mean-
ingful information. To better visualize the data for user tracking,
we use graphs to present all processes, files, and network connec-
tions in a user session. We visualize the session profile generated
by UTrack using the dot language, and then apply different level of
simplification on the graph.

A fundamental challenge of presenting the session profile on
a single graph is that the graph could be very large due to pro-
cesses accessing a large amount of files or network connections in
a long session. To alleviate this issue, we aggregate similar files and
network connections when visualizing the session profile graph.
For instance, the activities of a process can be represented as in
Figure 6. For the files, we find common prefixes of the file names
and abstract them with the same prefix. The network connections
are either aggregated using the host name of the IP address.The
details of the abstraction can be found in Section 6.5. Note that
the essential difference between the presentation abstraction and
the data reduction/compression techniques is that the actual data
model is not changed in the presentation simplification process.
Namely, the abstraction does not preserve any resource, but is only
used to help the security auditors to have a better view on the data.

6 IMPLEMENTATION AND EVALUATION
6.1 Experiment Environment
We deploy UTrack on 111 hosts of a real enterprise environment,
21 Linux hosts and 90 Windows hosts. An agent is installed in each
host to collect and report system events. UTrack itself is written
in Java and contains 8.3K LoC. We evaluate the performance of
UTrack based on one month of data. Within this period, more than
4 billion events are generated, where 1.65 billion events come from
Windows hosts and 2.41 billion events come from Linux hosts. To
facilitate the use of history data, we implement a data replayer
to replay the data recorded and stored in the database with their
original timestamps. With the assistance of the replayer, we are
able to replay the one-month data within 30 hours.

6.2 User Tracking
In our one month experiment, we identify 507 user sessions across
111 hosts. Note that the login screen itself is counted as a user
session and excluded from our data. Among the total 507 user
sessions, only 61 of them are Linux sessions. One reason is that

Table 1: Servers with the Most Network Connections

Program Name Number of Instances User Instance Mode Host Type
sshd 134,492 671 Create New Linux
smbd 8,120 428 Create New Linux

Postgres 5,152 559 Create New Windows&Linux
sendmail 1,218 17 Create New Linux
httpd 874 841 Worker Pool Linux

Linux users are less likely to log off or restart their computers than
Windows users. Besides, there exist 4 Linux hosts that do not have
any user sessions, which means that they are used as servers and
no one logs on the hosts through the Linux desktop environment.
However, the activities in those servers may be correlated to user
sessions in other hosts. On average, each user session lasts 4.6 day.
We also observe that Linux sessions are significantly longer (9.1
days) than Windows sessions (3.9 days). More than 100 sessions
last beyond the one month period, so they are excluded when we
compute the average session lifespans.

For cross-host tracking, we first identify the communication
channels. We correlate network events from all hosts by matching
5-tuple attributes, which include local IP, remote IP, local port, re-
mote port, and the network protocol. However, due to port or IP
recycling, two network events might be wrongly matched. To avoid
such a situation, we add a constraint that two matching events
should happen within a small time window. This small window
should consider the possible errors caused by asynchronous clocks
on different hosts and network resource recycling. In our imple-
mentation, we set the time window to 60 seconds, and we recycle
the unpaired events after this time window.

In our environment, the number of all ready-to-pair network
events stabilizes at around 20,000 to 25,000. We observe that only
around 12.3% of network events can be eventually paired, and most
of the matched network events (82.4%) are localhost channels. This
is reasonable because any communication to the outside world
cannot be paired. Even the internal communication may not be
identified, since not all computers host an agent in our environment.
Another case is the broadcast network events, which have multiple
receivers. When the server is working in the worker-pool mode, it
may take a non-negligible time to determine the delegated worker,
since it needs to go through a network channel matching process. If
a worker is found, a virtual process will be created for the requester.
However, before the virtual process is created, the network request
may have already been partially or entirely handled, because most
requests are handled very quickly. Thus, one should record the
mapping between the virtual node and the actual node, and migrate
the stand-out events to the virtual node once the delegation relation
is established.

During the one-month experiment, we observe more than 186
programs that accept network connections, and the top 5 programs
are listed in Table 1. The “Number of Instances” column shows
the total number of request processing instances we observed. In
our environment, since a server frequently runs ”ss” to localhost
for system backup, we observe a large number of ssh events. We
also find a Postgres database that constantly stores new data from
network connections. An Apache server runs the default pre-fork
Multi-Processing Module (MPM) to support a worker pool. The
“User Instance” column indicates the instances that belong to a user



Table 2: Classification Results

Interactive Non-interactive Total
Classified as Interactive 447 (TP) 181 (FP) 628

Classified as Non-Interactive 5 (FN) 25,746 (TN) 25,751
Total 452 25,927

session. It shows only a small portion of the cross-host activities
can be seen in a user session, since most of the virtual process nodes
are pruned due to their irrelevance to user activities.

6.3 User-centric Activity Tracking
To detect interactive processes, we employ an important feature,
the “regularity” of activities, which is measured by the first and
second order entropy rates on the inter-arrival time of activity
batches in a process. In our implementation, we empirically set the
threshold of batching (𝑇 ) as 350 ms. Figure 7 illustrates the CDF of
the number of batches a process has when doing the interaction
detection, and the number of events a batch has. Both of them are
heavily tailed. For clarity, we limit the 𝑥 axis to be within 100. We
observe that 70.7% of processes have only one batch, and 99.1% of
processes have fewer than 100 batches. Similarly, more than 78% of
batches have fewer than five events, and 97% of batches have less
than 100 events. When computing the entropy of the process, we
round the time interval to second-granularity to mitigate noise.

Another important feature we use is the lifespan of a process,
which describes the time duration from the time the process is
created to the time it is ended (or the current time if it is still alive at
the time of decision making). The lifespan is a strong indicator of an
interactive process. Due to the communicative nature, interactive
processes tend to live longer than other processes. Therefore, a large
amount of transient processes, especially in Linux hosts, could be
filtered out by inspecting their lifespan of milliseconds. Figure 8
illustrates the CDF of process lifespan, which indicates that around
90% of processes have a short life time less than 20 ms.

Our model also considers the context of a process, including the
parent process, the number of child processes, and the nature of
the parent, as a set of important features. If a process is created by
a window manager (e.g., compiz is the default window manager in
Ubuntu 16.04), the process is more likely to be an interactive pro-
cess. We also blacklist 16 types of commonly seen non-interactive
processes (e.g., “/etc/update” periodically runs on Ubuntu OSes) to
remove unnecessary distractions. It is hard to maintain a white-
list since a process could be sometimes interactive and sometimes
non-interactive depending on user operations.

In total, we extract 11 features to build a random forest model
based on Weka [15] to predict if a process is interactive. In the
training stage, we manually examine and label processes in 50
user sessions (20 Linux sessions and 30 Windows sessions) in a
one-day period. An advantage with manual effort is that we can
deliberately search the mainexec of a process online and better
understand what the process is used for. The machine learning
module is triggered when a process’s ending event is observed or
the process has a sufficient nubmer of activities, including batches,
network connections, and child processes.

Figure 7: Batches in Processes Figure 8: Lifespan of Processes

More than 26,000 processes are labeled after filtering out the
processes on the blacklist. We apply 10-fold cross-validation on all
the processes, and the evaluation results are shown in Table 2. Our
machine learning module has a high accuracy and recall of 99.3%.
However, the module has a fairly low precision, which is only 71.1%.
Therefore, in a user profile, there are a non-negligible portion of
processes that do not really interact with the user. However, even
with those false positives, the user profile has been largely reduced
since the dominant factors of non-interactive processes are mostly
identified and pruned off. We argue that having some wrongly
classified processes in the profile is acceptable since the amount of
noise created is limited and can be easily identified by the security
auditors.

6.4 Data Modeling
Wemodel files accessed by both processes and sub-process branches,
and compress them by only recording the deviations from themodel.
This modeling process is done when the process is ended. In most
cases, the interaction detection module also kicks in at this moment.
It produces the same results no matter which module runs first,
since the modeled processes will be pruned if they or their ancestors
are later decided to be non-interactive. On the other hand, pruned
processes do not go through the interaction detection stage. In fact,
most processes do not live more than 20 ms (as shown in Figure 8),
and will be immediately pruned or modeled. In our implementation,
we apply data pruning, if applicable, before modeling for higher
efficiency. As such, the evaluation results are only applied on the in-
teractive processes and their offspring. In contrast, non-interactive
processes are pruned off before any modeling can be done.

We build an FP-Tree [16] to model the commonly accessed files
of the same mainexec on each host. The FP-Tree is frequently used
to mine association rules from a growing data. We set the Minimum
Support Threshold (MST) to 0.3, so that files with frequency less
than 0.3 are discarded from the tree. The FP-Tree no longer changes
after the training period. At this stage, new processes with the same
mainexec can be modeled using the Tree. Since many processes may
have the same process branches that exhibit exactly the same system
behaviors, we compress the same branches into one and record the
number of occurrences. Some processes may have a random token
in the mainexec, such as the Chrome renderer processes. We handle



them in a case-by-case manner. Similar to data pruning, our online
branch modeling algorithm adopts a bottom up approach, which
starts modeling from the leaf processes and propagates back to the
parent process if no leaf process is alive. When a parent process
notices that multiple child processes have the samemodel, it merges
these child processes and records the occurrence of the model. The
model of each process is represented in an XML-styled structure,
which stores the information of files, remote IPs, and mainexec of
itself and its offspring. Note that the backward propagation in our
user sessionmodel stops at the interactive processes. This is because
the model becomes increasingly large in lower-depth process nodes
due to the large number of child processes. Also, it does not provide
any help on compressing the data, because the process models at
these levels are rarely identical and thus hardly compressible.

In the 507 user sessions, 8,382 interactive processes and 176,822
other processes (i.e. the child processes of the interactive processes)
are identified. After modeling the branches, more than 71% of the
processes are compressed, leaving us 8,382 interactive processes
and 50,394 of their child processes. All 58,776 processes access
more than 1.2 million files. After data modeling, the number of files
reduces to 502,446 (around 60% reduction), where a file model is
counted as one file.

On average, each user session has about 116 processes, which
is a small number considering that a user session can last for sev-
eral days. However, the number of accessed files is large, almost
1,000 files per session profile. We observe that the majority of files
come from process initialization, since a new process can easily
read hundreds of files during initialization. Although this initializa-
tion process can usually be modeled, our experiment period may
not cover enough instances of the processes, so all the files are
preserved. When UTrack runs for a sufficiently long time, these
processes can also be modeled. Our implementation on presenta-
tion simplification, which is designed for purely presentation with
some information loss, can partially remedy this problem.

6.5 Presentation Simplification
We can further simplify the graph describing the user session pro-
file to provide a better view for the auditors, especially when a
process is opened and many configuration files are read at once.
Furthermore, there are cases that a large amount of temporary files
with random names are created, so these files cannot be modeled
at all. To tackle these problems, we manage to abstract the files
and network channels into few nodes while preserving sufficient
information for understanding the whole process. Note that the
complete data is not lost in this abstraction step, so if needed, an
auditor can look into each abstraction for complete information.

Similar endeavors have been made in [17] to model the behavior
of containers that run the same services. However, in their imple-
mentation, except for some special types of files, all other files are
collapsed into one abstract, which is too aggressive and tends to
lose important information. For example, when we have 10 files
prefixed with "/A/B/C/" and 1 file named "/A/D/EFG", a preferable
way might be to preserve both “/A/B/C/*" and “/A/D/EFG" instead
of collapsing all files into "/A/*".

6.5.1 File Abstraction. When there are a large amount of file access
that cannot be modeled, we may need to sacrifice data accuracy in

file abstraction in exchange of a more succinct presentation. Toward
this end, we build a 𝑡𝑟𝑖𝑒 (a.k.a. prefix tree) for all the files that are
accessed by a process. In a trie, each node stores a single character,
and two file names with a common prefix share a single path until
the end of the common prefix is reached. By carefully trimming
the tail branches of the tree, we can achieve a higher degree of
condensation and keep the output graph concise. However, due to
trade-off between the amount of preserved information and the
degree of abstraction, we can only benefit from the abstraction
when the gain is deemed larger than the cost. In our case, the
gaining is defined by the number of files that can be abstracted
when folding all nodes under a single node in the trie, and the cost is
the loss on the filename characters. Specifically, the gain is defined
as

∑𝑛
𝑖=1 𝑔𝑖 , where𝑛 is the total number of files that can be abstracted,

and 𝑔𝑖 is the preserved information for each of the file, which is
set as 𝑙

𝐿
+ 𝑓 , where 𝑙 denotes the number of complete directory

level of the abstract file name, 𝐿 denotes that of the complete file
name, and 𝑓 represents a fraction of the preserved part of the
last level of the file name. For example, when abstracting the file
“/A/B/C/DEF" to “A/B/C/D*", it is 3

4 +
1
3
4 = 0.83. Note that we stress

the directory depth instead of the length to mitigate the effect of
long file names. We develop a greedy algorithm to trim the trie in
an iterative manner. In each iteration, we abstract the files with
the maximum gaining until the number of files is within a max_file
threshold, which specifies the number of files that we prefer each
process not to exceed in the presentation. Another scenario to stop
the iteration is when the gain of abstracting a set of files is less than
a threshold (𝜏 ). Note that 𝜏 cannot be less than 1, otherwise a single
path will be abstracted with no gaining. Both max_file and 𝜏 can
be adjusted to balance the precision and size of the graph.

6.5.2 Network Abstraction. Network events are also hard to model
since user-driven network channels cannot be easily predicted, and
thus cannot be modeled accurately. Therefore, it is important that
we abstract the network behaviors. We choose to model the remote
IP addresses. First, we look up the domain name of a remote IP
address. If the domain name can be found, we abstract IP address
with the same top-level domain and secondary-level domain, since
these two levels of domains are usually sufficient to identify a
remote host. Now an abstraction may look like “*.google.com" or
“*.Facebook.com." In case the remote hostnames cannot be found by
a reverse DNS lookup, we adopt a network mask approach similar
to [17]. Specifically, we abstract the class B and class C subnets to
abstract most IP addresses in a similar manner to file abstraction.

6.6 Graph Presentation
Figure 9 depicts a simplified user session profile we identified from
our network environment. In Figure 9, the two different colors
indicate two hosts. Processes, files, and remote IPs are represented
by ovals, squares, and diamonds, respectively. The complete graph
has a total of 323 nodes, including processes, abstracted files and
remote IP addresses. For simplicity, we omit most unimportant files
from the graph with one exception of the “outlook.exe" process. We
illustrate the 5 abstracted files read by “outlook.exe" in the graph
to give a basic idea of how the files look like after the abstraction
step. For other processes, we put the number of abstracted files
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Figure 9: Example User Profile
Path1:C:/Users/X/appdata/local/microsoft/windows/temporaryInternetfiles/content.IE5

Path2: C:/Users/X/appdata/local/microsoft/outlook
Path3: C:/Users/X/appdata/local/TEMP

File1: C;/program files/common files/system/ado/msadox.dll

and the number of total files inside the process node. The case of
a process without a number indicates that the files are completely
modeled. Meaningful files are preserved as nodes on the graph. The
timing information is not included in this figure due to the space
limit. Besides, timing is not critical in understanding the figure. The
number of abstracted branches is shown in brackets on edges.

From the figure, we can easily find the user’s activities inside
the enterprise network. The user logs in the system on a Windows
host and the session lasts for six hours. The session spans two hosts
through interactive ssh connections using putty. On the Windows
host, the user browses the Internet via Chrome and uses Outlook
for emailing. The user then logs on a remote Linux host to edit and
run a python program “X.py" (the file name is anonymized), which
further runs the “ls" program many times. In general, a graph-based
session profile presentation can be easily understood by a human
auditor, and provides important insights on the activities of a user.

7 USE CASES
Many more UBA features can be directly applied to UTrack for
anomaly detection. For example, one can audit the roles (user ac-
counts) that a user has been playing in the network from the user
profiles and identify higher-level inconsistencies. For instance, one
cannot be both “Alice” and “Bob” in the same session profile. Besides
providing a foundation of UBA systems, there are many other use
cases that can be built on top of UTrack. For example, it can be used
in forensics analysis to study the behavior of attackers (such that
the attacker becomes the POI) and reveal more seemingly benign

behaviors which are in fact part of the cyber kill chain. UTrack can
also be used to determine the value of files (by the amount of time
an employee spent on a file) for backing up digital asset. This is
particularly useful in fighting ransomware.

8 RELATEDWORKS
User Tracking and UBA User or user activity tracking has been
extensively studied in different contexts and various techniques
have been proposed. One typical scenario is web user tracking
through different measures [1, 3, 28]. User behavior tracking for the
security purpose drives UBA, where user accounts are no longer
the single indicator of who an incident is performed by. Nowadays,
many security companies have announced UBA tool integration or
plan to develop UBA in their systems [4, 19, 20, 35, 42].

UBA consists of two steps. The first is to model normal user
behaviors, and the second is to detect abnormal users by examining
how deviated they are from normal users. There can be many
metrics, algorithms, or machine learning models being used to
identify an abnormal user [33, 35]. Contemporary UBA mostly
models users based on basic patterns or statistics, for example,
several basic statistics, such as total upload bytes and total download
bytes of a user [33]. However, to detect more sophisticated attacks, it
is vital to ensure high accuracy and descriptiveness of user activities.

Log Audit Log audit has been used in many fields of security
research, such as forensics analysis [22, 23, 27], intrusion recov-
ery [14, 21], and intrusion detection [10]. One of the most widely
adopted log levels is the OS level, where the basic units are process,
files, sockets, etc. The reason is that the OS level maintains high
fidelity of states of the entire system, as well as incurring acceptable
CPU and storage overhead [22]. There are previous works focusing
on the reduction of the storage overhead while not losing much
information [25, 46]. Besides, there are also previous works that
attempt to increase data granularity based on OS level logs [24, 26].
One important use of log audit is to understand an attack, espe-
cially more sophisticated attacks (APT attacks) or unknown attacks.
Security experts rely on the logs to determine how an attack hap-
pens [22, 24, 27], as well as its impact on the system [23]. They
capture the causal relationship among processes, files, or sockets,
and reconstruct the provenance of an attack and its ramification.
HERCULE [30] leverages community discovery algorithms to iden-
tify attacks based on the fact that the attack activities belong to
the same community in a graph. [6] logs events at the proxy and
focuses on parsing traffic from application protocols like SQL.

User Interaction Detection The detection of bot generated
data (system-triggered) fromhuman-generated data (user-triggered)
is a long-studied subject that has applications in many fields. Gen-
erally there are two types of detection. One is the active detection,
such as CAPTCHA [44], which is easy to implement, (arguably)
more accurate, but intrusive. The other type is the passive detection,
which relies on processing log events to detect abnormal behav-
iors. The related previous works include detecting game cheaters
through Human Observational Proof [13], bots in online social
networks [7–9, 43], detecting malicious web bots/crawlers, Google
reCaptcha [34], and malicious crawler detection [45]. There are
some significant differences between these techniques and ours. A



major one is that they have specially tailored data input. For exam-
ple, user agent, cookie lifetime in Google’s reCaptcha [34], a user
account favored access log system in [13, 45], or side information
such as social graph [7, 9, 13, 43].

9 CONCLUSION
This paper presents UTrack, a novel user tracking system that con-
nects events under different user accounts and from different hosts
to form a novel holistic user session profile. UTrack enables a sys-
tem auditor to easily find out the activities of users inside enterprise
networks. UTrack associates the activities of a user effectively by
identifying a session root and then following both the local process
lineage and the network control flow of the session root. To achieve
scalability and salient description, UTrack employs an interaction
detection module to sift out the most relevant events that result
from users’ interactions, and models common file and activity pat-
terns. Our evaluation in a real enterprise environment of 111 hosts
shows UTrack’s effectiveness on producing accurate and concise
user session profiles for system auditors to use.

REFERENCES
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM CCS.

[2] Animashree Anandkumar, Chatschik Bisdikian, and Dakshi Agrawal. 2008. Track-
ing in a spaghetti bowl: monitoring transactions using footprints. In ACM SIG-
METRICS Performance Evaluation Review, Vol. 36. 133–144.

[3] Richard Atterer, Monika Wnuk, and Albrecht Schmidt. 2006. Knowing the user’s
every move: user activity tracking for website usability evaluation and implicit
interaction. In WWW.

[4] BALABIT. 2015. Privileged Account Analytics - User Behavior Analytics Security
Solution. https://www.balabit.com/privileged-account-analytics.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using
Magpie for Request Extraction and Workload Modelling.. In USENIX OSDI.

[6] Adam Bates, Wajih Ul Hassan, Kevin Butler, Alin Dobra, Bradley Reaves, Patrick
Cable, Thomas Moyer, and Nabil Schear. 2017. Transparent Web Service Audit-
ing via Network Provenance Functions. In Proceedings of the 26th International
Conference on World Wide Web. 887–895.

[7] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding
the detection of fake accounts in large scale social online services. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and Implementation.
15–15.

[8] Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil Jajodia. 2010. Who is
tweeting on Twitter: human, bot, or cyborg?. In Proceedings of the 26th ACM
Annual Computer Security Applications Conference. 21–30.

[9] George Danezis and Prateek Mittal. 2009. SybilInfer: Detecting Sybil Nodes using
Social Networks.. In NDSS. San Diego, CA.

[10] Dorothy E Denning. 1987. An intrusion-detection model. IEEE Transactions on
software engineering 2 (1987), 222–232.

[11] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M Chen.
2014. Eidetic Systems.. In USENIX OSDI. 525–540.

[12] Steven Gianvecchio and Haining Wang. 2007. Detecting covert timing chan-
nels: an entropy-based approach. In Proceedings of the 14th ACM Conference on
Computer and Communications Security. 307–316.

[13] Steven Gianvecchio, Zhenyu Wu, Mengjun Xie, and Haining Wang. 2009. Battle
of botcraft: fighting bots in online games with human observational proofs.
In Proceedings of the 16th ACM Conference on Computer and Communications
Security. 256–268.

[14] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal De Lara. 2005.
The taser intrusion recovery system. In ACM SOSP. 163–176.

[15] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter (2009).

[16] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without
candidate generation. In ACM SIGMOD Record, Vol. 29. 1–12.

[17] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer.
2018. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In NDSS.

[18] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R Sekar, Scott Stoller, and VN Venkatakrishnan. 2017. SLEUTH:

Real-time attack scenario reconstruction from COTS audit data. In 26th USENIX
Security Symposium. 487–504.

[19] IBM. 2016. IBM QRadar User Behavior Analytics. https://www.ibm.com/cz-
en/marketplace/qradar-user-behavior-analytics.

[20] Johna Till Johnsons. 2015. User behavioral analytics tools can thwart security
attacks. http://searchsecurity.techtarget.com/feature/User-behavioral-analytics-
tools-can-thwart-security-attacks.

[21] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M Frans Kaashoek. 2010. Intrusion
Recovery Using Selective Re-execution.. In USENIX OSDI. 89–104.

[22] Samuel T King and Peter M Chen. 2003. Backtracking intrusions. ACM SOSP
(2003), 223–236.

[23] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti, and Peter M Chen.
2005. Enriching Intrusion Alerts Through Multi-Host Causality.. In NDSS.

[24] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition.. In NDSS.

[25] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: garbage col-
lecting audit log. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security. 1005–1016.

[26] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,
and Dongyan Xu. 2015. Accurate, low cost and instrumentation-free security
audit logging for windows. In ACM ACSAC. 401–410.

[27] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: towards practical
provenance tracing by alternating between logging and tainting. In Proceedings
of NDSS, Vol. 16.

[28] Jonathan R Mayer and John C Mitchell. 2012. Third-party web tracking: Policy
and technology. In IEEE Symposium on Security and Privacy 2012. 413–427.

[29] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, R Sekar, and VN Venkatakr-
ishnan. 2019. Holmes: real-time apt detection through correlation of suspicious
information flows. In 2019 IEEE Symposium on Security and Privacy. 1137–1152.

[30] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei
Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. 2016. Hercule: Attack story
reconstruction via community discovery on correlated log graph. In Proceedings
of the 32nd Annual Conference on Computer Security Applications. ACM, 583–595.

[31] Patrick Reynolds, Janet L Wiener, Jeffrey C Mogul, Marcos K Aguilera, and Amin
Vahdat. 2006. WAP5: black-box performance debugging for wide-area systems.
In Proceedings of the 15th International Conference on World Wide Web. 347–356.

[32] Bo Sang, Jianfeng Zhan, Gang Lu, Haining Wang, Dongyan Xu, Lei Wang, Zhi-
hong Zhang, and Zhen Jia. 2012. Precise, scalable, and online request tracing for
multitier services of black boxes. IEEE Transactions on Parallel and Distributed
Systems 23, 6 (2012), 1159–1167.

[33] Madhu Shashanka, Min-Yi Shen, and Jisheng Wang. 2016. User and entity behav-
ior analytics for enterprise security. In 2016 IEEE Big Data. 1867–1874.

[34] Suphannee Sivakorn, Jason Polakis, and Angelos D Keromytis. 2016. I’m not a
human: Breaking the Google reCAPTCHA. Black Hat,(i) (2016), 1–12.

[35] Splunk. 2015. Splunk User Behavior Analytics.
https://www.splunk.com/en_us/products/premium-solutions/user-behavior-
analytics.html.

[36] Byung-Chul Tak, Chunqiang Tang, Chun Zhang, Sriram Govindan, Bhuvan
Urgaonkar, and Rong N Chang. 2009. vPath: Precise Discovery of Request
Processing Paths from Black-Box Observations of Thread and Network Activities..
In USENIX ATC.

[37] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-
Malek, Julio Lopez, and Gregory R Ganger. 2006. Stardust: tracking activity in a
distributed storage system. In ACM SIGMETRICS Performance Evaluation Review,
Vol. 34. 3–14.

[38] Mike Tierney. 2015. The Rise of User Behavior Analytics.
http://www.veriato.com/company/blog/veriato-blog/2015/12/15/the-rise-
of-user-behavior-analytics.

[39] Roy Hodgman Tod Beardsley. 2015. RAPID 7 Research Report: Understanding
User Behavior Analytics.

[40] Trustwave. 2015. Trustwave global security re-
port. https://www2.trustwave.com/rs/815-RFM-
693/images/2015_TrustwaveGlobalSecurityReport.pdf.

[41] Melissa Turcotte and Juston Shane Moore. 2017. Technical Report LA-UR-17-
21663: User Behavior Analytics.

[42] VARONIS. 2016. User Behavior Analytics. https://www.varonis.com/user-
behavior-analytics/.

[43] Bimal Viswanath, Ansley Post, Krishna P Gummadi, and Alan Mislove. 2010.
An analysis of social network-based sybil defenses. ACM SIGCOMM Computer
Communication Review 40, 4 (2010), 363–374.

[44] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel
Blum. 2008. recaptcha: Human-based character recognition via web security
measures. Science 321, 5895 (2008), 1465–1468.

[45] Shengye Wan, Yue Li, and Kun Sun. 2017. Protecting Web Contents against
Persistent Distributed Crawlers. In IEEE ICC.

[46] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High fidelity data
reduction for big data security dependency analyses. In ACM CCS.


	Abstract
	1 Introduction
	2 Motivations and Challenges
	2.1 Motivations
	2.2 Challenges

	3 System Overview
	4 UTrack Event Association
	4.1 Tracking In-host User Activities
	4.2 Tracking Cross-host User Activities
	4.3 System Cold Start
	4.4 Scope

	5 Pinpointing User Activities
	5.1 Interactiveness Detection
	5.2 Non-interactive Process Pruning
	5.3 Data Modeling
	5.4 Presentation Simplification

	6 Implementation and Evaluation
	6.1 Experiment Environment
	6.2 User Tracking
	6.3 User-centric Activity Tracking
	6.4 Data Modeling
	6.5 Presentation Simplification
	6.6 Graph Presentation

	7 Use Cases
	8 Related Works
	9 Conclusion
	References

