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Abstract—Modern malware and cyber attacks depend heavily
on DNS services to make their campaigns reliable and difficult to
track. Monitoring network DNS activities and blocking suspicious
domains have been proven an effective technique in countering
such attacks. However, recent successful campaigns reveal that at-
tackers adapt by using seemingly benign domains and public web
storage services to hide malicious activity. Also, the recent support
for encrypted DNS queries provides attacker easier means to hide
malicious traffic from network-based DNS monitoring.

We propose PDNS, an end-point DNS monitoring system
based on DNS sensor deployed at each host in a network, along
with a centralized backend analysis server. To detect such attacks,
PDNS expands the monitored DNS activity context and examines
process context which triggered that activity. Specifically, each
deployed PDNS sensor matches domain name and the IP address
related to the DNS query with process ID, binary signature,
loaded DLLs, and code signing information of the program
that initiated it. We evaluate PDNS on a DNS activity dataset
collected from 126 enterprise hosts and with data from multiple
malware sources. Using ML Classifiers including DNN, our
results outperform most previous works with high detection
accuracy: a true positive rate at 98.55% and a low false positive
rate at 0.03%.

I. INTRODUCTION

The Domain Name System (DNS) is one of the funda-
mental services of the Internet. DNS translates domain names
into IP addresses, thereby isolating the naming scheme from
the effects of underlying network changes. This makes DNS a
critical attack vector, as it allows malicious users to hide their
network footprint behind short-lived domain names (e.g., com-
mand and control, fast-flux [56], [3]). How to distinguish
legitimate domains from those involved in malicious activities
(e.g., fast-flux networks, bot networks, DGA domains, spam
networks) has been a constant focus in the security research
community [5], [6], [7], [13], [46], [22].

Most research on DNS-based malicious activity detection
focuses on finding victim hosts by analyzing and modeling
various properties of the DNS traffic, such as the diversity
of resolved IPs [5], [6], [7], [13], [46], geographic informa-
tion [7], [46], name string structure [7], [13] and DNS Time-to-
live (TTL) values [13], [46]. However, recent examples of suc-

cessful attacks ([24], [23]) reveal that attackers obfuscate the
communication channel indistinguishable at the network level
by incorporating legitimate web and cloud storage services to
hide their command and control (C&C) connections. For ex-
ample, the C&C channels and drop sites of the recent malware
campaigns such as HammerToss [24], and Poshspy [23] occur
only on legitimate services (e.g., Twitter, GitHub, Dropbox,
Photobucket). These seemingly imitating normal user behavior
makes these malware hard to be identified by traditional
DNS traffic-based detection systems. Also, due to the recent
rise of deploying encryption over DNS queries (e.g., DNS-
over-TLS [1], DNS-over-HTTPS [2]), the attackers now have
another way to establish a channel to their C&C bypassing
the existing network-level detection systems. To detect such
attacks, one would need to expand the monitored context
around the DNS activity of the host and examine the processes
that initiate such activity.

In this paper, we propose PDNS, the first large-scale
process-level DNS monitoring system. PDNS consists of sev-
eral DNS sensors, deployed on end-hosts, and a back-end ana-
lytic server. The DNS sensors monitor and capture information
about the DNS activity of hosts along with associated programs
and processes. The back-end server collects data from sensors
and builds machine learning models to detect malicious DNS
behavior and its associated process.

To build a model to detect malicious behavior, PDNS col-
lects and analyzes two types of DNS activity features. On one
hand, it collects established and previously proposed network-
based DNS features, such as IP and domain location diver-
sity [7], [46], [37], [6], domain string entropy and length [7],
[13], resolve failure percentage [7], [13], and domain registered
and renewed periods [22], [37]. On the other hand, it introduces
new process-based features that characterize the relationship
between processes and DNS activities, such as the number of
requested domains per process, the number of resolved IPs per
process, code signing information and domain registrants.

An end-host approach to DNS monitoring has the following
benefits: (1) PDNS supports a more precise analysis and
detection by narrowing the scope from host-level to process-
level. Because DNS sensors can access a system’s internal
features, such as loaded DLLs or binary signature informa-
tion, they can help model activities that are indiscernible
from network-only monitoring. (2) Immediately determines
the malfeasant process associated with suspicious behavior.
While some information (e.g., domains, resolved IPs) can
be collected over the network-level monitoring, our DNS
sensor collects in a process-centric manner which allows us
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to identify and associate to a particular malicious process and
in turn enhance our detection in the long run. (3) Improves
visibility over encrypted DNS. DNS-over-TLS/HTTPS [1], [2]
are designed to prevent man-in-the-middle attacks on DNS
traffics. However, it also hides DNS traffics from traditional
network-based monitoring solutions. Our end-host approach
still monitors malware that queries domain names using DNS-
over-TLS/HTTPS.

To demonstrate the effectiveness of PDNS, we deployed
end-point DNS sensors to 126 Windows hosts on an enterprise
network. We collected over 131M DNS records and their
responsible process information between February and August
2017. In addition, we gathered malware samples from different
sources at different times. Total 19k collected malware samples
were executed in a sandboxed environment [17] to capture their
DNS and process activities. Our PDNS back-end system runs
several classifiers, such as Random Forrest, Logistic Regres-
sion, K-Nearest Neighbors, Support Vector Classification, and
Deep Neural Networks, to build a detection model for benign
and malicious process behaviors. Our models can accurately
distinguish benign from malware processes with a maximum
true positive rate of 98.55% and false positive rate of 0.03%.
Furthermore, PDNS demonstrates its capability in identifying
stealthy attacks which are undetected by previous detection
methods, as their malicious activities (including C&C and drop
sites) only occur on legitimate domains.

We bring the following contributions.
Firstly, we propose and design PDNS, a novel end-point

DNS monitoring system that immediately detects the malicious
process inside the compromised host by analyzing DNS along
with their associated program information. To the best of our
knowledge, our work is the first of its kind that automati-
cally associates an individual process and its DNS queries
on an enterprise scale. PDNS also explores an extensive set
of network- and host-based features. PDNS re-interprets the
existing features by narrowing down its analysis scope to
process-level.

Secondly, PDNS proposes new features by integrating
existing DNS and host-based features that can reveal hidden
relationships between (seemingly legitimate) DNS requests
and the processes that trigger them. While newly introduced
integrated features reduce the false positive rate by 46.7% (Sec-
tion V-G2), in overall, PDNS approach accurately classifies
benign programs from malware programs with a true positive
rate of 98.55% and false negative rate of 0.03% (Section V-D).

Finally, PDNS improves the visibility of security moni-
toring to support detection of stealth attacks equipped with
counter forensic techniques. As the first step, PDNS approach
successfully classified HammerToss attack (Section VI-A).
We further explore the design possibilities of building robust
features leveraging PDNS data collection.

II. MOTIVATION

To motivate the need for a combined network- and process-
based DNS activity analysis, we present exemplary program-
DNS profiles for a well-known program (Skype.exe) and a
malware example (Mal.exe). To understand them, we first
define two concepts used throughout the paper.

• Program represents a software or an application. A
program binary or a group of binaries can represent a pro-
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Fig. 1: Program-DNS profiles of benign program (Skype.exe) and
malware (Mal.exe) captured by PDNS.

gram. For instance, the Skype.exe program can have
different binary versions that fulfill the same functionality.

• Process defines a runtime instance of a program. A pro-
gram can have multiple processes with different program
identifiers (PID).

Program-DNS Profile for Skype.exe. Figure 1(a) presents
the program-DNS profile for Skype.exe captured by PDNS.
Skype.exe program instantiates itself into multiple pro-
cesses by loading the executable binary. In order to use the ser-
vice, each client process connects to the skype’s domains (and
related domains e.g., Microsoft’s for signing in), which in turn
requires making DNS queries to obtain IP addresses. PDNS
collects data includes system internal sources for process-
related information and external sources for network-based
information. By correlating the network- and process-based
information, we can build more accurate program profiles.

Throughout the monitoring period, we observed a high
correlation between program and their DNS queries. For
example, in the case of Skype.exe, all collected 29K DNS
queries from Skype.exe processes are corresponding to only
19 distinct domains, where 17 of which are registered by
Microsoft or Skype. More interestingly, they are registered
under only four organizations and only registered to United
States (US), except Skype’s domains registered to Ireland (IE).
Program-DNS profile also indicates the correlation between
the software publisher of the program and the registrant of
the domains accessed by the program. The code signing
information for Skype.exe indicates the software publisher
as “Skype Software Sarl”. Correspondingly, the DNS WHOIS
records confirm that majority portions of DNS queries have
either “Skype” or “Microsoft” as registrants which are the
same company in the end. Finally, we also observed that these
processes load GUI and user-interaction related DLLs. This is
reasonable as the program operates with a graphical interface
and allows user interactions.
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Fig. 2: PDNS data collection. The figure depicts delegated DNS
service model in Windows and the latest version of Linux systems.

Program-DNS Profile for Mal.exe. Figure 1(b) presents the
program-DNS profile for a malware (Mal.exe) captured by
PDNS. The program visited around 20 distinct domains. Given
that the malware is executed only once from our sandbox en-
vironment, domains that the program visited are very diverse.
All domains are registered under different organizations from
diverse geo-locations. Some domains are Non-existence (NX-
DOMAIN). Lastly, although the malware is properly signed,
the code signer hardly matches the domains’ registrants. The
malware mostly runs as a background process without loading
GUI and user interaction DLLs.

While there are approaches that detect malicious activities
exclusively from process-based information [43], [44] or
network-based information [45], [59], [20], [19], [48], we pro-
pose to use and correlate both types of information altogether
to improve the malicious behavior detection accuracy.

III. SYSTEM OVERVIEW

This section sketches the architecture of PDNS. We first
describe our data collection from end-hosts to the backend
that aggregates and analyzes program-DNS inputs. We then
describe our operational workflow of PDNS that builds models
from real-world DNS inputs to detect malicious activities.

A. PDNS Data Collection
PDNS collects DNS activity data at both process and

network level. Figure 2 depicts the overall flow of PDNS
data collection. The primary data collection module, PDNS
sensor, is installed inside a host and monitors DNS queries for
all processes. The sensor intercepts DNS activities for each
process (Figure 2 1 ). It also obtains each process informa-
tion from the kernel, such as loaded dynamic-link libraries
and binary signatures (Figure 2 2 ), before reporting to our
DNS backend (Figure 2 3 ). The PDNS backend aggregates
process-level DNS activity reports from all PDNS sensors in-
stalled on each host and further extends the network and DNS
related information by referring to other information sources
for DNS WHOIS, IP WHOIS, IP Geo-location, etc. (Figure 2

4 ). PDNS also collects DNS activity history from the local
DNS server and cross-checks with the DNS records reported
to PDNS backend (Figure 2 5 ). This final component acts
as a fail-safe in case the attacker takes over the end-host and
launches an attack against the PDNS sensor.

There are two key technical challenges of DNS sensor
implementation: (1) how to capture all DNS activities from
the system, and (2) how to associate each DNS activity
with its originating process. We address the above challenges
using an ensemble of data collection mechanisms. Programs
usually perform name resolutions via one of the two channels:
(1) direct UDP communication with the name server, or (2)
DNS task delegation to a system service. To cover the direct
channel, we leverage network tracing facilities – specifically,
the HONE [55] open source project, which provides kernel
modules that not only capture system-wide network traffic,
but also associate every packet with corresponding process ID.
However, network tracing cannot provide useful information
when programs utilize the delegated channel, because all cap-
tured traffic will be associated with the DNS service daemon,
regardless of the original requesting process. To cover the
delegated service model, we either resort to intercepting the
inter-process communication between the name resolution ser-
vice and requesting processes, or, if available, digest detailed
diagnostic logs produced by the service.

We implement and deploy prototype PDNS sensors for both
Linux and Windows operating systems. For Linux systems,
we found that most hosts in our target enterprise environment
do not utilize the system internal service for DNS caching,
every process directly queries to outside DNS servers for
name resolutions. Hence our Linux sensor uses network trac-
ing (HONE) as its sole event source. For Windows systems,
the situation is the inverse – the OS provides a dedicated DNS
Client Service [39] which most programs take advantage of,
and rarely any program performs direct name resolution. On
Windows 8 and below, we intercept and log LRPC communi-
cations between querying program and DNS Client Service; On
Windows 8.1 and above, similar information can be obtained
more easily from the DNS Client Service Event Tracing for
Windows [40].

Recently, we observe two notable changes in how systems
configure DNS service and how programs make DNS queries.
The latest Linux distributions switch to dedicate system ser-
vices for DNS caching as their default configuration. Programs
have options to configure themselves make direct DNS query
for the privacy [1], [2]. To achieve complete monitoring
coverage, PDNS sensor should include both channels.

B. PDNS Training and Detection
This section illustrates the PDNS training and detection

workflow. Firstly, we deploy PDNS sensors to an environment
that we want to protect. PDNS sensor from each end-host mon-
itors and records everyday DNS activities of all programs. The
inputs accumulate to establish benign dataset in the backend.
In case it is uncertain that all captured activities are indeed
benign, we take additional steps to sanitize data by antivirus
scanning, malware database cross-checking, or by manually
inspecting the suspicious processes. For comparative analysis,
we set up a constrained environment using the Cuckoo sand-
box [17], and capture malicious program and DNS activities.
We follow a number of common guidelines [30], [25], [18], [8]
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to avoid triggering anti-VM techniques employed in various
malware. For this analysis, we gathered total 131k malware
samples from different sources at different periods of time.
After the careful process of filtering, we retained 19k samples
for the training and testing. We detail the collection and
filtering process of malware dataset in Section V-B.

The resulting benign and malicious datasets are labeled and
fed into our training module, which performs feature extraction
and supervised learning using several classifiers (e.g., Ran-
dom Forest, Logistic Regression, Deep Neural Networks)
(Section V-C). We deploy the model with the best training
results for real-time detection. We implement the learning
module with an open-source machine learning library, Scikit-
learn [50]. The library supports various classifiers and other
machine learning algorithms. We also leverage their rich func-
tionalities: cross-validation, hyper-parameters tuning, model
exporting, and classification metrics in our model training.

Finally, while the detection module can also be deployed at
the host-level, we opt for the backend deployment (centralized-
based). In addition to the convenience in regularly updating,
and retraining the model, this design also prevents the detection
module from being tampered when the local machine is
compromised as well as allowing the host’s DNS activity to be
cross-checked with the local DNS server (Section III-C). The
detection is designed to provide real-time classification results
based on various classifiers including the deep-learning based
classification model. We describe the detail of our training in
Section V-C.

C. Threat Model
As for the attacker’s capabilities, we assume that the

attacker can compromise the individual host. But the or-
ganization’s IT infrastructure, including PDNS backend and
network services, is well guarded and remains in a trust
domain. As mentioned, our execution model does not rule
out the possibility of the attackers tampering PDNS sensors
from one or more hosts. To counter this, PDNS cross-checks
DNS records from PDNS backend and the DNS query history
obtained from local DNS servers for data consistency (Figure 2
5 ). The attacker may also attempt to redirect DNS queries to

the outside by using external DNS servers, and this can still
be hindered by monitoring TCP/UDP 53 traffic going outside
the network.

IV. FEATURE SELECTION

In this section, we identify key features and describe
the intuition behind their selection. In total, PDNS uses 61
features to build program DNS behavior models. Table I
presents an overview of features and Appendix A includes
more details. We classify the features into three categories,
based on their sources. (1) Network-based features come
from external sources of data, such as WHOIS records and
IP locations from DNS requests. (2) Process-based features
characterize the relationship between processes’ attributes and
their DNS behaviors. Although most network features have
been proposed in previous works [13], [7], [5], [6], [37],
[63], [22], [46], our network-features are associated with its
responsible processes to interpret DNS behavior from the
individual processes’ perspective (Section IV-A). Finally, (3)
Integrated features combine information from multiple sources

Main Source Data Source Feature Category # Feats Related Works

Network-based
(External sources)

WHOIS
Domain Duration
Domain Registrant
Location

12
5
2

[22][37][63]
[37]
[37][46]

WHOIS,
IP Location

AS Number
Location

4
2

[5][6][46]
[6][46][37]

Authoritative
Nameserver Domain TTL 3 [13][46]

Process-based
(Internal sources)

DNS Activity,
Code Signing,
OS Kernel

Domain and Hostname
Domain Resolve FR
Code Signing
Loaded DLLs

22
1
1
3

[5][6][7][46][13]
[13]
[44][43]
[17]

Integrated
WHOIS,
IP Location,
Code Signing

Location
Publisher and Registrant

2
4

# Feats: The number of features derived from each feature category.

TABLE I: Overview of PDNS features (in total 61 features). The
entire list of features is presented in Table IV (Appendix A).

to define meaningful correlations between processes and their
network activities.

We first describe terminologies to interpret features which
we evaluate them in a process-centric manner. Next, we explain
how we transform these features (feature transformations) to
fit our ML classification.

A. PDNS Feature Presentation
1) Terminologies: We define new concepts that capture and

present DNS activities in the context of individual process.
Given a process p running on a host, we define:

• RHNs (Requested Hostnames) is the set of all hostnames
requested by p and captured by PDNS sensor. A hostname
is a name string in a DNS query. Hostnames can be
names of internal hosts (e.g., print, wpad) or fully qualified
domain names (FQDN) that include all labels (subdomains)
(e.g., www.a.example.com).
• RDNs (Requested Domains) is the set of all domain

names requested by p and captured from PDNS sensor. The
domain name represents a label adjacent to the top-level
domain (TLD) of FQDN e.g., example.com, example.co.uk.
To handle TLDs with two labels (e.g., co.uk) and to classify
them correctly as TLD, we cross-check with Mozilla’s
public suffix list [42] which maintains the current list of
public suffix domains. The definition of RDNs is similar to
the 2TLD feature propose by Antonakakis et al. [5].
• RIPs (Resolved IP Addresses) is the set of all IPs resolved

from hostnames in DNS queries sent by p.

2) Feature Transformation: We apply various transforma-
tions to the values of certain features to better express them
as inputs for the ML classifiers.

• Numerical. We extract statistical measures of average, me-
dian, and standard deviation (SD) for the numerical data
we collect (e.g., Registered Duration, Domain TTL). For
instance, when we process the Registered Duration feature
of a given process p, we calculate statistical measures for
all RDNs requested by p.
• Frequency. We monitor the occurrences of various events

(e.g., number of domains, DNS requests) and express the
results with three frequency metrics: the number of all
events, the number of distinct events, and the ratio between
the numbers of distinct events and all events (distinct ratio).
Because processes have different lifetimes, our frequency-
based features cannot always be compared to each other
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directly. For example, long-lived processes might have many
but sparse DNS requests, while shorter-lived processes
might have the same number of requests, but occurring more
frequently. We represent each frequency-based feature in
two ways: the frequency for the entire lifetime of the process
and the average frequency over one-minute intervals.

• String. We translate string-based data (e.g., domain name,
registrant strings) into a numerical representation, before
extracting statistical measures. For example, to represent
our hostname structure, we compute the length and entropy
of characters in the hostname string. Then, we calculate
the average, median, and SD of the length and entropy of
RHNs. Some features (e.g., domain registrant and software
publisher) require string matching; we compute the string
matching score as described in Section IV-D.

• Category. Part of our data collection belongs to certain
classes or binary e.g., whether the library is loaded or
whether the code is signed. We encode each class using
one hot encoding vector. To illustrate, in the Loaded DLLs
features, we use the value ‘1’ to represent the library
category that is loaded by the process and ‘0’ to represent
not loaded. Similarly, the Code Signing feature also use ‘1’
or ‘0’ to represent code signed and verification status.

B. Network-based Features
Given DNS activities, we collect network-based features

from one of three external sources: domain WHOIS, IP
WHOIS, and domain authoritative nameserver list. We in-
terpret these features in a process-centric manner in order
to achieve a better understanding of the association between
processes and their DNS activities.

1) The Domain WHOIS Record: maintains information
about registered domain names: registrant, registered country,
nameservers, registered date, updated date, expiration date1.
Previous research explored the WHOIS information and its
role in classifying malicious domains [22], URL [37], phishing
emails and sites [63]. In the case where domain name’s
WHOIS record is not found, PDNS assigns -1 value (which
indicates no data) to all related features. PDNS includes the
following WHOIS items to its feature set:

Domain Duration features are derived from domain registered
and renewed durations.

Registered Duration is the time difference between the
domain’s registered time and the current time. This feature
reflects the freshness of a domain. Malicious domains tend
to be fresher due to frequent blocking and re-generation
cycles [22], [37]. We observe this pattern across our datasets,
where overall, processes in our benign dataset have on an
average registered duration of 6,266 days (17.2 years), while
the processes in our malicious dataset have 3,181 days (8.7
years).

Renewed Duration is the time difference between the
domain’s updated time and its expiration time (initially in-
troduced by Ma et al. [37]). While benign services register
their domains for a long period, malicious domains prefer to
register for a shorter duration due to the lower cost. We also
observe this behavior in our datasets, specifically, the majority

1Our WHOIS features only rely on public (privacy-safe) information. We
exclude sensitive information (e.g., name, and email) to comply with the new
ICANN GDPR Specification (https://www.icann.org/dataprotectionprivacy)

of malicious processes have shortened domain renew duration
(Figure 3(a)).

Domain Registrant is the organization who registered the
domain. We observed that the domains requested by a be-
nign process often generally belong to a smaller number of
registrant organizations than those requested by malicious
processes. Figure 1 presents DNS requests captured from
Skype.exe processes on our enterprise deployment. Notice
that only four external domain registrants are associated with
29k DNS requests from 19 unique domains. In our datasets,
malicious processes have on average 2.5 times more registrants
than benign processes.

Domain Location is the location information of the organi-
zation registering the domain. We obtain location information
for a domain by analyzing the country code (CC) for each
WHOIS registrant. If the CC does not exist, then we refer to
TLD’s CC. This information helps PDNS in constructing the
geolocational profile of a process. Overall, processes in our
benign dataset have on average distinct country ratio at 0.19,
lower than the malicious processes at 0.53. This confirms our
assumption on the variation of domain country can indicate
the suspiciousness of malicious processes.

2) IP WHOIS Record and IP Location: records maintain
registration and location information about each IP. We gen-
erate the following features:

AS Number is the number of the autonomous system to
which the IP belongs. Legitimate processes tend to have fewer
distinct AS numbers than malicious process due to their more
deterministic patterns for IP connections [5], [6], [46]. In
particular, we found that our malicious dataset has on average
roughly twice higher distinct AS ratio at 0.41 compared to our
benign dataset at 0.28.

IP Location represents the country of the organization reg-
istering the IP. Given a process p, we obtain geolocation
information by referring to IP WHOIS records of IP in the
process’s RIPs When the information is not available, we
refer to the country field in IP geolocation record from IP
geolocation services [26], [31].

3) The Authoritative Nameserver: holds the DNS records
of a name. We generate the domain Time To Live (TTL)
features as follows.

Domain TTL specifies how long each domain should be
cached by a local DNS server. As Bilge et al. [13] pointed
out, low TTL values allow malicious domains to better resist
DNS blacklisting and takedowns. A Fast-flux network is an
example of an attack where the set of resolved IPs changed
rapidly [56], [4].

C. Process-based Features
To monitor DNS activities with improved visibility, PDNS

first captures DNS activities and the responsible processes and
then probes internal system resources to collect more process-
related information.

1) DNS Activity: features characterize each process’s ex-
ternal DNS behavior.

Domain and Hostname features characterize the domains
and hostnames requested by each process. We first generate
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Fig. 3: Examples of CDF of features derived from different activities
and properties from benign and malicious processes.

length and entropy values for each domain (RDNs) and host-
name (RHNs) and then compute statistical measures, generat-
ing overall 22 derived features. The domain entropy features
are useful in detecting DGA-like DNS activities as shown by
Antonakakis et al. [7].

Domain Resolve Failure Rate (RF) has been used in network-
level detection [37]. Here, we use it in the context of process-
level analysis. Given a process p, PDNS computes failed DNS
queries over all DNS queries made by p. Figure 3(b) plots
the CDF graph of resolve failure rate from our datasets. The
feature clearly differentiates the benign and malicious datasets.
Among malware datasets, unfiltered (2015-) malware dataset
shows a higher failure rate than unfiltered one (2017-). Only
0.78% of processes in our enterprise (benign) dataset has a
non-zero resolve failure rate higher than 0%. On the other
hand, over 91% of processes from malware datasets of 2015
and 2017 show non-zero failure rate.

2) Process Information: features characterize the system
behavior of a process. The process-DNS relation enables
PDNS to probe the internal system sources and gather useful
information in restoring context around DNS activity. PDNS
includes features about Windows code signing scheme2 and
libraries loaded at runtime.

Code Signing features include (1) the process (software)
signed status, and (2) the process (software) publisher. This
information is located in the subject name or common name
of the software’s certificate. While code signing status on
Windows itself cannot guarantee that the binary is safe to
run, given that users can ignore the warnings or that malicious
software can fake the certificate [34], our study shows that
most unwanted software collected is not signed. Essentially, we
trace executable file of a process and retrieve its signed status.
We then assign a category to each status: unsigned, signed and
verified, and signed but unverified. To this end, we found that

2Code signing feature is specific to Windows systems and is not a common
security practice for Linux systems.

91% of processes in our benign dataset are signed and correctly
verified. Only 0.006% are signed but unverified. On the other
hand, 57-63% of processes in our malicious datasets are signed
and 0.12-0.16% of processes are signed but unverified.

Loaded DLLs features characterize the nature of the process
and its expected DNS query patterns. We first attempt to cate-
gorize processes into three groups based on the dynamic-link
libraries (DLL) loaded at runtime: user interactive, command-
line, and non-interaction processes.

User-interactive process: We observed that a process with
a high volume of distinct domain queries often includes the
graphic user interface (GUI) and web communication (Web-
Comm) DLLs as they allow users to have control over desti-
nation hostnames. Examples of such processes are interactive
GUI applications (e.g., firefox.exe, chrome.exe, outlook.exe).
Malicious processes often request a high distinct number of
domains queries without having any user interactions.

Command-line process: A process with only User Inter-
action (UI) DLLs (not including GUI and WebComm) often
results to be a command-line process e.g., svchost.exe,
python.exe, lucoms˜1.exe (Symantec antivirus up-
dater), jusched.exe (java updater). Processes in this cat-
egory are likely to have a lower number of distinct domain
requested compared to UI processes.

Non-interactive (service) process: Processes that do not
belong to either of the above two categories often visit a
specific set of domains. For instance, taskhost.exe goes
only to Microsoft or internal domains. If a process queries a
high number of distinct domains but loads neither DLLs for
user interactions nor command line control, it is likely to be
a malicious process.

D. Integrated Features
All features discussed so far are collected from a single

source. We now combine these features to find a new correla-
tion and obtain more powerful, multi-source features.

Software Publisher and Domain Registrant. As malware can
abuse the trust process when obtaining certificates [34], relying
solely on code signing information might mislead the ML
classifier. We introduce a new feature by combining domain
registrants from Domain WHOIS record and software pub-
lisher information from the process code signing information.
The majority of processes in benign dataset requests DNS
queries whose domain registrants have connections to software
publishers, say owner domains. Figure 1 illustrates an example
of the strong association between publisher (signed by “Skype
Software Sarl”) and the majority of domains (skype.com,
skype.net, and skypeassets.com) extracted from DNS queries.

While the software controlled by users (e.g., web browsers)
is less likely to preserve the publisher-to-registrant correlation,
we observed a stronger association during the software start
period. Figure 4 illustrates an example case for Firefox, which
compares the number of cumulative DNS queries captured
during the entire runtime and during the start period (first 120
seconds, depicted in the center). The portion of DNS queries
to “Mozilla Corporation” is higher during the start period.

As the software publisher and domains registrant names
may not of exact matches, (e.g., Microsoft Inc, and Microsoft
Corporation), we apply Fuzzy String Matching [51] based on
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Fig. 4: Majority of DNS queries of Firefox.exe depend on user input.
However, during the start time (first 120 seconds, in the center),
the Firefox processes on average have a higher queries to domains
registered under Mozilla, which is also their software publisher.

Levenshtein distance and string tokenization comparison when
comparing two strings. We propose four new features which
are derived by computing two string matching scores for both
(1) the start period and (2) entire process runtime. Figure 3(c)
presents the software publisher and domain registrant name
matching score during the start period, where a higher score
(closer to 1.0) indicates higher similarity between those names.
As shown in the CDF, the majority of malicious processes have
lower similarity score when compared to benign processes
(over 90% of benign processes have the score of 1.0).

Relation of IP and Domain Location. Previous works showed
that location-based features are effective in detecting malicious
DNS behavior [5], [37], [46]. We re-visit these features by
combining geolocation information for IP and Domain for a
given process. PDNS constructs the set of CCs from RDNs and
RIPs, then computes statistical features such as the number
of distinct countries from domains (in RDNs) and IPs (in
RIPs), the number of distinct continents from domains and
IPs, and the ratio between distinct countries and all countries.
We also compare the country sets retrieved from RDNs and
RIPs, where we define the correlation score (CDN ) as follows.

Let CDN = {A1, A2, ..., An} be the set of country codes
retrieved from domains in RDNs, and CIP = {B1, B2, ..., Bn}
be the set of country codes retrieved from IPs in RIPs. We
compute the intersection between each pair of the two sets
Ii,i = Ai ∩ Bi, for i = 1, ..., n. Note that when the Ai

and Bi are physical neighbors, we allow the result of the
intersection operation to be the domain country code, instead
of the null element (e.g., Aj = “CZ” and Bj = “SK”,
then Ij = “CZ”). Finally, we compute the correlation score
as the ratio between the length of the intersection set I
and the length of the RDNs set (or RIPs set). Legitimate
services are likely to maintain their domains and resolved IP
address in the nearby region (e.g., subnet, country). Malware’s
IP addresses, however, are altered over time and placed in
a number of different location to avoid being permanently
blocked (e.g., dynamic DNS). Therefore a lower correlation
score (closed to 0.0) is likely to indicate suspicious domain,
IP pairs (Figure 3(d)).

CDN (Content Delivery Network) hosted services are
served from geographically distributed locations which may be
far off from the domain register location. When legitimate pro-
cesses visit CDN hosted services, the geo-correlation between
the IP and domain locations may be low, similar to malicious
processes. However, in this case, other IP based features

(e.g., the distinct IP’s country, distinct AS number) offset the
penalty, as resolved IPs are located in the nearby regions. On
the other hand, malicious processes have a diversified profile
for these features, which results in a lower score in overall.

V. EVALUATION

In this section, we evaluate PDNS seeking answers on the
following research questions:

Q1: PDNS overhead: How much computational overhead
does PDNS incur to end-hosts and its backend (Sec-
tion V-A)?

Q2: Detection capability: How effective is PDNS’s model in
detecting malicious activities (Sections V-D and V-E)?

Q3: Feature importance: What roles do the host and network
features play in PDNS detection? and How do newly
proposed integrated features contribute to detection ac-
curacy (Section V-G)?

Q4: False positives: How many false alarms PDNS generate
and for what reason (Section V-H)?

A. PDNS System Overhead
Our end-host PDNS Windows sensor uses 2% CPU time

and 55 MB of memory; our Linux sensor uses on average
0.2% CPU time and 4 MB of memory. We use Postgres for our
backend database, which accommodates about 1,200K records
per day (approximately 2GB storage space). The backend
database uses on average 20% CPU time and 200 MB of
memory. Our training and detection are implemented in Java
and Python and designed to report alerts within a one-minute
threshold. While the computational cost for our periodic offline
model updates is high, the cost for online detection is quite
small and practical – requiring only less than 1% CPU time
and 50 MB of memory on average.

Result 1: PDNS system imposes a small or reasonable
amount of computational overhead to its end-hosts and
backend.

B. Datasets
1) Benign Dataset: We deployed PDNS sensors (described

in Section III-A) to our enterprise environment comprising
over 126 Windows workstations, in which we collected their
network and process DNS activity data during February - Au-
gust 2017. Our enterprise workstations are equipped with basic
applications e.g., browser, office, email, chat applications, de-
veloper tools, as well as antivirus software. Users are allowed
to install their own software. We performed our evaluation
only on Windows hosts, due to the limited number of Linux
malware samples. To ensure that the collected data contains
only benign processes, we retrieved hashes of executable
binaries (MD5, SHA-1, or SHA-256) from all processes and
cross-checked them against the public malware database [59].
Overall, our benign dataset contains 130,579,550 DNS re-
quests, from 455,470 processes (corresponding to 643 unique
programs and 1,543 unique hashes).

2) Malicious Dataset: To understand the behavior of ma-
licious processes, we collected malware samples from sev-
eral sources and executed them in a sandboxed environment
equipped with PDNS sensor. We describe (1) the collection
and validation of malware samples, (2) our post-processing for
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Dataset Source #Samples Reported #DNS #Processes %Processes
Year Queries Conn.

Successful
Train-1 VirusSign 12,657 2015 1,177,116 4,676 72.93
Train-2 VirusShare, 4,070 2017 613,399 2,309 79.08

VXVault
Train-Total – 16,727 – 1,790,515 6,985 74.96

Test VirusShare 2,687 2018 96,601 1,557 59.83

Total – 19,414 – 1,887,116 13,970 72.22

TABLE II: Malware dataset statistics. PDNS uses Train-1, and Train-2
datasets for training model, and Test dataset for evaluating our model
on unseen malware.

malicious DNS traffics we captured from sandbox executions,
and (3) malware process connectivity check as follows.

We collected malware data from publicly available sources
at different times. Table II summarizes the sources. We use the
2015 and 2017 malware datasets for assessing the effectiveness
of our feature engineering, training and verification of malware
detection models (Section V-D), and the 2018 dataset to
validate the detection capability of our model specifically in
detecting new and unseen malware (Section V-E).

As we could not confirm that downloaded samples are
active and malicious, to refine malicious dataset, we applied
two filtering conditions. First, we filtered them based on their
submission time to guarantee the freshness of malware; sam-
ples that have their submission time older than one month from
our execution time are discarded. We then excluded irrelevant
random files by referring to public Malware Database [59].
After our filtering process, we retained total 19,414 unique
malware samples. We set aside 2,687 samples from the latest
dataset (2018) to test the capability of our model in detecting
unseen malware samples.

When running the malware in the sandboxed envi-
ronment, PDNS sensor captures DNS traffic from both
malware processes and existing background system pro-
cesses (e.g., svchost.exe). While we can safely regard
DNS queries from newly introduced binaries as malicious,
traffic from pre-existing system processes can represent either
legitimate or malicious requests. PDNS labels a process p as
malicious if one of the following conditions is met: (1) p is
instantiated from a newly introduced program binary, (2) p
makes queries to blacklisted domain names [47], [28], (3) p
is a pre-existing program (e.g., svchost.exe) but its DNS
query behavior deviates from its baseline profile established
from our benign dataset.

To create the baseline profile for each pre-existing program,
we first extract the RDNs (Section IV) for each program in
our benign dataset. This establishes a relationship between
program and list of requested domains. We then manually
select the profiles that have ≤ 10 requested distinct domains
and create our program-based profile sets, which contain the
expected domains. We then use these sets to check against
all processes in our malicious dataset and regard the process
as malicious when their RDNs are not the expected domains.
After our post-processing, our final malicious dataset contains
over 1.89M DNS activities from a total of 13,970 processes.

Lastly, we check the connectivity of malware processes and
retain one that has at least one successful connection to an
external IP address. The rightmost column in Table II shows
that, among all malware processes, 72.22% has at least one

successful TCP connection. Section V-F details our classifiers
trained using malware processes with successful connections.

C. Training Methodology
We train our models using the benign dataset and the 2015

and 2017 malware datasets.

Dataset Normalization. The benign dataset contains almost
two orders of magnitude more DNS queries than the malicious
dataset and may affect models towards classifying malicious
activities as benign. To counter the problem, we balance the
two datasets using the SMOTE technique [15] – a combina-
tion of over-sampling the minority class and under-sampling
the majority class. To avoid overfitting due to re-sampling,
we perform ten-fold cross-validation before over-sampling, a
standard practice recommended by prior work [36].

Classifiers. We experiment with five classifiers: Random
Forest (RF), Logistic Regression (LR), K-Nearest Neigh-
bors (KNN), Linear Support Vector Classification (Lin-
earSVC)3 and Deep Neural Network (DNN) built with a
Neural Network Multi-layer Perceptron classifier.

Parameter Tuning. To achieve the best results, we use Hy-
perparameter tuning, specifically GridSearchCV, to find the
approximate good parameter ranges, we then manually fine-
tune each parameter within its range. For RF, we set Gini
Impurity as the criterion for splitting, the number of trees= 80,
and max depth = 25. For LR, we set liblinear as our solver
with the inverse of regularization strength C = 0.01. For
KNN, we found the optimal number of neighbors to be 3. For
LinearSVC, our optimal penalty parameter C = 0.1. Finally,
our optimal number of hidden-layers for the DNN is 10.

Metrics. To capture the accuracy of the classifiers, we eval-
uate true positive rate (TPrate), false positive rate (FPrate),
precision-recall curve, receiver operating characteristic (ROC),
area under the ROC curve (AUC). The TPrate measures the
percentage of malicious processes that are correctly identified
as “malicious” by our model, while the FPrate measures the
percentage of benign processes that are incorrectly identified
as “malicious” by our model (false alarm rate). The ROC and
AUC visualize the relationship of TPrate, FPrate, and all
possible classification thresholds.

To understand the importance of each feature, we use the
mean decrease in impurity (MDI) [14], [35], designed for tree-
based ensemble classifiers. The MDI is a score between 0.0 to
1.0 assigned to each feature, where a higher score indicates a
greater importance of the feature from a trained classifier.

D. Detection Accuracy
Figure 5(a) shows the detection results from each classifier

using the precision-recall curves. With 2015 malware dataset,
the RF classifier reports the best detection results. Specifically,
from ten-fold cross-validation (detection threshold equal to
0.5), the RF classifier achieves an average, minimum and max-
imum of TPrate at 98.03%, 97.22% and 98.71%, respectively,
and an average, minimum and maximum FPrate at 0.02%,
0.01% and 0.03%, respectively.

3An implementation of Support Vector Machine classifier using liblinear,
designed to scale to a large number of samples

8



(a) Precision-recall (b) ROC

Fig. 5: Precision-recall and ROCs interpolated from ten-fold cross-validation of malicious-2015, 2017, and 2015 and 2017 (combined) datasets.
Random Forest (RF) gives the best detection results with accuracy >= 0.999, precision >= 0.979, recall >= 0.968, f1score >= 0.975
and mean AUC >= 0.995 in all datasets.

Next, we show that our models trained on the 2015 dataset
also work well against 2017 malware dataset. We use the same
classifiers with the same tuned parameters. The RF classifier
achieves the best result again: the average, minimum, and
maximum TPrate at 96.80%, 94.37% and 98.70%, respec-
tively, and the average, minimum and maximum FPrate at
0.01%, 0.003% and 0.015%, respectively. We also evaluate
the accuracy with a combination of both 2015 and 2017
malware datasets and the result also achieves a high accuracy,
on average TPrate = 98.55% and FPrate = 0.03%, presented
on the rightmost of Figure 5(a) and ROC curve in Figure 5(b).

Result 2-1: PDNS achieves high accuracy in detecting
malicious processes with an average of 98.55% true positives
and 0.03% false positives in the training phase, assuring the
effectiveness of our feature engineering.

E. Unseen Malware Detection Accuracy
While PDNS achieves high detection accuracy on the 2015

and 2017 malware datasets, we also attempt to evaluate its
effectiveness with unseen malware – newly observed and
excluded from the training. We use the latest malware dataset
collected during 2018 (marked as “Test” in Table II) and select
the RF detection model trained from ten-fold cross-validation
of 2015 and 2017 datasets (Section V-D) which achieve the
highest accuracy compared to other classifiers. To this end,
our model still maintains a very high accuracy, on average
TPrate = 98.03%. This result confirms the predictive power of
our approach which also works against malware that is unseen
and relatively new.

Result 2-2: PDNS detects malicious processes from new
and unseen malware with high accuracy (TPrate = 98.03%)

F. Malware Freshness
Dynamic malware analysis often presents challenges on the

freshness and activation of the sample used. For example, as
C&C servers are typically short-lived, and running a malware
sample that is unable to contact its C&C server might result
in the malware not being activated. To see if this might affect
the accuracy of our prediction model, in addition to the DNS
traffic, we also capture all network traffics of the malware
processes after the DNS resolution. Next, we select malware

Rank 2015 dataset 2017 dataset
Feature Category ID MDI Feature Category ID MDI

1 Domain Resolve FR 53 0.098 Location 47 0.117
2 Publisher and Registrant 58 0.077 Location 50 0.073
3 Publisher and Registrant 57 0.066 Domain Duration 33 0.072
4 Publisher and Registrant 55 0.066 Domain Duration 39 0.066
5 Domain and Hostname 22 0.050 Domain Duration 40 0.052
6 Publisher and Registrant 56 0.045 Publisher and Registrant 55 0.052
7 Domain and Hostname 21 0.042 Publisher and Registrant 56 0.046
8 Code Signing 54 0.030 Publisher and Registrant 58 0.038
9 Domain Duration 41 0.025 Domain Registrant 43 0.035

10 Location 48 0.024 Domain Registrant 34 0.029
ID: Feature ID, MDI: Mean Decrease Impurity

TABLE III: Overview of top-ten feature importance ranking from RF
models trained with 2015 and 2017 malware datasets. The feature
category and ID refer to the feature category, ID in Table IV in
Appendix A. Note that our newly proposed features are ranked in
top-two in 2015 and top-six in 2017 dataset.

processes that have at least one successful connection from the
2015 and 2017 dataset (Table II) and retrain our classifiers.
Using the same features, our RF classifier still achieves a high
accuracy, on average at TPrate = 97.84% and FPrate =
0.03% (∆TPrate =↓ 0.71% and ∆FPrate = 0.0%).

G. Feature Importance Study
In this section, we measure the contribution of each feature

to the detection accuracy and how it changes over time.
We also examine the effectiveness of PDNS newly proposed
features.

1) Features with High Importance: We compute the MDI
for all 61 features described in Section IV and present the
top ten features for the 2015 and 2017 malware datasets in
Table III. Appendix B contains the MDI scores for all features.
Next, we discuss and highlight the most significant features.

Publisher and Registrant. The feature category Publisher
and Domain Registrant which measures the similarity between
software signer information and the domain registrant of the
program’s primary domain names, shows a very high impact
on both 2015 and 2017 malware dataset. As shown in Table III,
it achieves high MDI scores and ranks second for 2015 dataset
and sixth for 2017 dataset.

Domain Duration (e.g., Domain Registered Duration and
Renewed Duration) features, are key features in the 2017
dataset. This indicates that attackers still prefer newly regis-
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Fig. 6: Comparison of precision-recall curves from (1) model trained
with all features including our newly proposed features (All features)
and (2) model trained only with adapted features from prior works
(Only adapted features).

tered domains as their C&C e.g., communication, drop sites
as Perdisciet al. [46] also discovered. However, since a higher
number of domains in the 2015 dataset have become outdated,
less active, or missing; these features, therefore, are less
significant in the 2015 dataset.

Domain Resolve FR is highly ranked in the 2015 dataset but
becomes less important in the newer 2017 malware dataset.
Since the 2017 malware samples are less likely to be blocked
or assigned to DNS sinkholes (still active and undetected), this
feature rank low for the model trained against 2017-dataset.
However, this feature may bias our trained model towards
inactive malware (already detected and their C&C sites were
taken down) and penalize detection accuracy for the new and
fresh malware. To accurately assess the potential influence of
this side effect, we re-train our classifiers without all features
that are affected by domain resolved failure (i.e., DNS resolve
failure rate, resolved AS number, resolved IP’s country). Our
RF model can still achieve high accuracy (TPrate = 97.74%),
albeit with slightly more false alarms (FPrate = 0.54%).

2) Newly Proposed Features: PDNS introduces new fea-
tures by integrating and combining pre-existing features (Ta-
ble I). Among all features, the features that correlate between
host and network information turns out to be most powerful.
For example, the feature category Publisher and Domain
Registrant is highly important to our detection model as shown.
To better assess the effectiveness of these newly proposed
features, we run the experiment with and without them and
measure the detection accuracy. Figure 6 shows the precision-
recall curve resulted from models with and without these
features. We focus on the RF model, as it performs best.
Overall, the re-trained RF model without our newly introduced
features still achieves an accuracy of TPrate = 98% on
average while incurring more false alarms. Specifically, our
model with new features reduces false positives at least 46.7%.

Result 3: Our newly proposed feature category that corre-
lates software publisher and domain registrant information is
highly ranked in the feature importance study and improves
detection accuracy by reducing 46.7% of false positives.

H. False Positives
During our evaluation, a total of 146 unique processes

were reported as false alarms from 45 distinct hosts of 126

Fig. 7: The daily distribution of false positives.

deployments. As the benign dataset collected over a period
of seven months, the distribution of false positives across our
enterprise is 0.7 false alarm per day on average. The total
1,328 DNS requests are misclassified which amount to 0.001%
of all DNS requests. Figure 7 presents the distribution of false
positives produced from our classifier during a period of seven
months on our enterprise.

We now discuss interesting cases worth paying attention to:
(1) Although our detection model has a low FP rate, we iden-
tify a recurring pattern across the FP processes. Specifically,
over 40.52% of the FP results are from command-line driven
processes and browsers processes where users can control their
domain inputs. (2) We present the case where benign processes
are classified as malicious because of their erratic behaviors.

Command-line Driven Process. The runtime logic of
command-line driven processes (e.g., pythonw.exe, java.exe,
javaw.exe, PowerShell.exe) are determined by the command-
line arguments given at program execution. For instance, both
Eclipse and Minecraft run with java.exe, but their runtime be-
haviors are completely different. Current PDNS data collection
includes the command-line arguments for each process. Pars-
ing those argument to identify and extracting the core argument
entries is a challenging task. Nonetheless, building models
that include those arguments, in addition to the program name
would help improving detection accuracy.

Browser Process. Some browser processes (e.g., firefox.exe,
chrome.exe, iexplore.exe) are misclassified as false positives,
especially when those send a highly large volume of DNS
requests than usual processes. As the browser’s DNS access
pattern highly depends on the user’s behavior, it is hard
to build a stable model. The models thus are deemed to
have false positives as well as true negatives – malicious
domains accessed through browsers. We, therefore, believe that
browsers are in their best interest to have their own security
protection that is tailored to their specific behaviors.

Benign Process with Erratic Behavior. We also observed
various programs that produced false positives. Among those,
the videodl.exe is a representative case that falls in borderline
between benign and malicious. PDNS classified videodl.exe
as an alert for the following reasons, (1) the process issued
high-frequency DNS queries in a short period of time, (2)
geo-locations of destinations are quite diverse, and (3) the
program itself is not signed. Our further investigation disclosed
that the program frequently makes requests to video sites
e.g., googlevideo.com, youtube.com, openload.co. However,
interestingly it also makes a large number of DNS requests to
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number of unrelated-video sites e.g., spadesplus.com (a game
site), pages.ebay.com (product pages of ebay), flyporter.com (a
flight booking site) and chinawomendating.asia (a dating site).
Upon a reporting of videodl.exe, our blue team identified that
the program was legitimately installed from an employee in
order to download media files for analytic purposes. Nonethe-
less, our finding highlights suspicious behaviors of the program
which is harder to be distinguish at network-level.

Result 4: PDNS produced only 146 false alarms during our
evaluation, translated into FPrate of 0.03%. On daily basis,
PDNS would report 0.7 false alarm.

VI. STEALTHY ATTACK DETECTION

The goal of our study aims at enhancing detection by
improving context and visibility. We are also interested in
detecting stealthy attack cases which present challenges to
existing solutions but can be mitigated with our proposal.

A. HammerToss Malware
The HammerToss malware [24] is first reported in the early

of 2015, one of its first kind that actively employs counter
forensic techniques to hide itself by mimicking user legitimate
traffics. To understand its behavior, we inspect and analyze
the malware closely. The behavior of the malware can be
summarized as follows:

1) Visit different Twitter pages and retrieve the attacker’s
twitted messages which include URLs. These URLs point
to the attacker-controlled GitHub’s pages.

2) Go to these GitHub URLs and fetch their contents
(e.g., images) at a specific time or during the victim’s
active time. For this step, HammerToss invokes Internet
Explorer (IE) process via DCOM communication and
delegates the connection.

3) Retrieve contents from the IE’s cache in order to get
commands hidden in those contents (steganography).

4) Execute the commands to obtain user’s information and
upload it to cloud storage services (e.g., Dropbox).

To evaluate the effectiveness of our model in detecting
HammerToss, we extended publicly available prototype [49]
and executed the malware in our sandbox environment. We
evaluate the attack in zero-day fashion, where our training
data does not contain the HammerToss samples. We measure
if PDNS can detect the HammerToss process itself and/or IE
processes that make connections on its behalf.

HammerToss Detection. Our model successfully detects the
HammerToss process in all cases. The multiple features con-
tributed to the detection. Most of all, as reported [24], Ham-
merToss binary is not signed and the process makes multiples
DNS queries without having GUI and UI DLLs loaded. Such
profiles are rarely observed from the benign dataset, whereas
they are common behaviors among malicious processes.

Only about a half (53.8%) of IE processes are classified as
malicious, primarily because its DNS queries violate Publisher
and Domain Registrant relation. However, such behavior, del-
egating of Internet connection to IE, is occasionally observed
from our benign dataset, as the functionality is officially
supported by Microsoft. This explains why PDNS did not label
all HammerToss’s IE processes as malicious.

B. Robust Detection of Counter-forensic Malware
While PDNS and its features are proven to be effective

in detecting a stealthy attack such as HammerToss malware,
attackers can still upgrade their malware logic to remain unde-
tected. As discussed, the attacker group behind HammerToss
(later authored POSHSPY [23]) uses legitimate and public
domains to disguise their connections. The malware further
hides its process trails with trusted system functionalities such
as WMI and PowerShell. These kind of techniques are getting
sophisticated and become harder to be detected. Since there has
not been a definite solution to deal with the stealthy attacks
that actively adapt various ways to counter forensic detections,
previous detections require manual effort and heuristics.

Building a program-DNS profile establishes a promising
way to enhance a mitigate on such attack classes. As PDNS
enhances monitoring with improved context and visibility,
PDNS can produce and consume threat intelligence informa-
tion that captures both network- and process-level behaviors. A
program-DNS profile is also applicable to distinguish a normal
program’s behavior from irregular behaviors when malicious
logic is injected. Our previous work [54] showed that malware-
infected programs have more erratic querying behavior and
tend to query domains that, albeit legitimate, are not associated
with the original program.

VII. RELATED WORK

In this section, we overview previous detection systems and
highlight the absence of appropriate measures for the process-
to-DNS relationship.

A. Network-based DNS Detection Systems
Since DNS is a critical attack vector, numerous works [60],

[5], [13], [6], [7], [46] have been proposed to analyze DNS
activities on DNS servers outside the host – at different levels
of DNS hierarchies. A survey [10] provided an overview of
the state-of-the-art network-based detection systems (including
other types of network traffic, e.g., packet, flow size). These
approaches collect passive DNS records mainly to map the IP
to DNS name from which it is translated and to aid forensic
analysis and network monitoring. The key difference between
these approaches and ours is that none of these focused on
detecting malicious activities in a process-centric manner. They
rather focused on detecting malicious domains, URLs, and
phishing sites. In the following, we summarize these works
and categorize them based on their detection goals.

Malicious Domains. Bilge et al. [13] presented EXPOSURE,
a system that can detect domain names involved in malicious
activities by performing passive DNS analysis on a large
amount of DNS query data. They proposed a number of
behavioral network-based features (based on DNS answer,
domain TTL, and domain name) that their system uses to build
malicious domain classifier and achieved high accuracy and
low false positive rate. Similar to previous works, Antonakakis
et al. [5] also proposed a system Nato, which computes a
reputation score for a new and unseen domain indicating the
probability of being malicious. This work introduces a number
of new features, e.g., Domain-IP relationship, and diversity
of IP locations. A follow-up work [6], Kopis, which uses a
similar set of features, is designed to operate on upper-level
DNS servers (i.e., top-level domain and AuthNS). Deploying at
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the upper-level hierarchy enables Kopis to enhance its visibility
and detect malicious activities faster than previous works.

Malicious URLs. Recent works from Bartos et al. [10]
developed a malware detection technique by constructing an
invariant representation of network-flow features, particularly
the information in HTTP URL strings (e.g., query value,
parameters, length, path). While their approach is able to
achieve high accuracy and identify new patterns of URLs for
each attack presented, it has the main limitation for malicious
activities occurring on HTTPS (encrypted traffic) aiming to
hide from detection, which are recently proved to be 37% of
all malware and have dramatical growth [38].

B. Host-based Detection Systems
Host-based detections analyze malicious processes, codes

and their runtime behaviors e.g., network and host activities.

Static and Dynamic Malware Analysis. Though numerous
works proposed to detect malware through static analysis [16],
[53] through methods of disassembly or reverse engineering,
malware authors likely create malware instances that avoid
being detected by these techniques, as pointed out by [41],
[21], as well as employ obfuscation techniques [62] to make
the malware even harder to be identified.

The detection systems use the dynamic analysis to observe
the malware behaviors while the malware is being executed
(e.g., function call, information flow tracking [29]). Willems et
al. [61] proposed CWSandbox, a malware analysis tool for
Win32 OSes that tracks and monitors system calls, modified
files, Windows registry, loaded DLLs and network connections.
Malware behaviors are collected through execution in a re-
stricted environment and reports are automatically produced.
Besides CWSandbox, studying malware behaviors under a
restricted environment is also proposed in [11], [58], [52].
However, unlike PDNS, none of these works has studied the
relationship between DNS activities and processes in detail.

Code Signing Information. Kotzias et al. [34] studied the
Microsoft’s Authenticode and evaluated the effectiveness of
the mechanism in practice. They identified a number of weak-
nesses, for example, Window’s applications (executable files)
are still correctly validated even when the signing certificates
have been revoked. Their study also revealed that out of
350k malware samples, most malware was largely unsigned
(only 5-12% signed). While the overall rate is similar to
our malware dataset, our recent malware samples from 2017
dataset have a higher signed and validated rate compared to
2015 dataset. Kim et al. [32] also studied the code signing.
However, unlike other prior works that studied code signing
on unwanted program ecosystem [33], [34], [57], they focused
on signed malware and showed a number of weaknesses in
the mechanism that allows attackers to abuse the trust of the
signing process. These attacks confirm that detecting malware
cannot solely rely on the code signing and verification process.

VIII. DISCUSSION

In this section, we discuss the evasion possibilities of our
newly proposed features as well as propose the direction to
improve the robustness of our detection and features.

A. Evasion Attacks
A determined attacker who knows our detection logic might

try to evade PDNS detection. Here we elaborate on possible
evasions and discuss some limitations of our system.

Forged Loaded DLL. As presented in Section IV-C, we uti-
lize the relations between a specific set of the process’s loaded
DLLs (GUI, UI) and their DNS usage pattern as one of our
anomaly indicators. Despite proven to be effective (as shown
in HammerToss detection VI-A), once such logic is disclosed;
the attacker can bypass the detection by simply loading those
DLLs without using them. Nonetheless, our detection can be
improved by extending in-host data collection. Specifically,
PDNS sensor can leverage OSes’ accessibility features and
support APIs to capture per-process user interactions e.g., the
number of keystrokes and mouse actions. This enhances our
detection granularity and makes it more difficult to bypass.

Forged DNS Activity. The attacker could actively work to
bypass DNS activity-based features. For example, the malware
could falsely perform DNS queries to the binary’s owner
domains during the start period to ensure the relationship
between the binary signer and domain registrar is established.
However since our detection model relies on over 61 features,
these evasions come with more cost and complexity for the
attacker to avoid more features. Finally, while the current
feature proposals might not be robust enough to penalize
the attacker who actively attempts to evade PDNS detection,
PDNS can easily extend its system data collection to strengthen
the detection thanks to the host-based sensor design. We leave
concrete proposals and their implementations as future work.

Encrypted DNS query. DNS-over-TLS [1] is a new proposal
to send DNS queries over an encrypted connection. As men-
tioned, while the scheme is designed to enhance user privacy
on the Internet, essentially prevent man-in-the-middle attacks
on DNS traffics; it also provides a useful mean for the attackers
to hide their malicious connections from being alerted by tra-
ditional network-based detections. These attacks become even
stealthier with DNS-over-HTTPS [2], since it operates over
HTTPS, allowing seemingly hidden under HTTPS sessions.

The PDNS approach can be a viable option to combat
against the malware with encrypted DNS traffic as follows.

1) In a case where a program delegates their DNS queries
to the dedicated DNS service (DNS-over-TLS/HTTPS
adopted by DNS system service at the OS-level). PDNS
sensor can capture all unencrypted DNS requests between
the program and the DNS system service.

2) When a process directly queries using DNS-over-
TLS/HTTPS, our current implementation cannot obtain
the DNS queries, instead we can only infer from its
destination host (DNS providers e.g., Google, Cloudflare),
port number (e.g., DNS-over-HTTPS (443) and DNS-
over-TLS (853)) and message size. However, since we
found that most processes in our dataset that make con-
nections using port 443 or 853 are loaded with the system
cryptographic libraries, we can extend our sensor (already
set to run at highest privilege) to intercept cryptographic
API calls in order to retrieve the encryption key for
decrypting the DNS queries.

3) The programs themselves can statically include all nec-
essary cryptographic functions and directly send DNS
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requests using DNS-over-TLS/HTTPS without referring
to the system’s cryptographic APIs. Nonetheless, as such
behavior is rarely seen from benign processes, PDNS can
safely label them as suspicious.

Malware with Idle DNS Activity. One of the main limitations
is the fact that PDNS is unable to detect malicious processes
with no network or DNS activities, as PDNS sensor only
records and reports processes that make DNS requests. There-
fore, if a (malicious) process has no DNS request, network
activity, or direct IP connection, its activities are hidden from
our detection. Nonetheless, as mentioned earlier, the majority
of attacks require an Internet connection as C&C or drop sites,
where employing domain names is a critical attack vector and
more stable compared to IPs. Recent studies also confirmed
that malware relies more on DNS to support their agile C&C
infrastructure [27], [3].

Cross-Process DNS Delegation. For data collection, PDNS
sensors capture and report the association between DNS query
and its immediate requester process. However, in reality, the
modern OSes allow processes to delegate their DNS and
network activities to another process. This may mislead PDNS
data collection to have incorrect labeling of requester process
for given DNS queries. MS Windows supports WebClient API
call that creates Internet Explorer (IE) process to make a
network call on its behalf. It then returns its result via DCOM
channel to the original process (Section VI-A). In such cases,
the lifetime of IE processes are very short only lasting for a
few seconds, and the IE process makes only a small number of
DNS queries. This differ from PDNS’s model for the program.
Therefore, PDNS labeled IE process created by HammerToss
as suspicious one. Rather fundamentally, PDNS can stably
track the caller and callee relationship by instrumenting and
intercepting WebClient API.

A more difficult case is when DNS queries are delegated
via illegitimate channels – using one of the cross-process
injection techniques [9]. This attack leaves very little footprints
while malware injects their logic into the benign programs.
Detection systems can hardly guess the relationship. While
the security community [61], [12] put efforts to mitigate such
attacks, no reliable solution has been proposed yet that goes
beyond the statistical approximations. As we discussed from
Sec VI-B, building a program-DNS profile case be viable
solution. Abnormal behaviors of the well-known programs
will violate PDNS’s model and therefore will be reported as
malicious activities. Upon detection, PDNS can use timing
information to infer the original requester process for the
malicious DNS queries.

B. Detection Enhancement

Feedback Loop. The malware trends and behaviors evolute
and change over time. It is important for any ML-based
solution to also stay in the game. Given that our system
is designed to update and re-train (centralized-based) model
regularly (Section III-B), we can feed malicious samples that
are known to bypass our detection into our training set in
an attempt to “patch” these evasions. Also, as our training
and detection reside on the backend, we can observe any
new statistical differences between new malware and benign
processes and adjust our features and models accordingly.

Comprehensive System Event Monitoring. Currently, PDNS
sensor collects a limited set of process information from host
internal sources. More system information would improve the
precision of PDNS model and detection capability. System
events, such as process creation, file access and IPC commu-
nication, may not be strong signals by themselves. However,
these events can play a role in increasing detection power when
they are combined together and associated with DNS activities.

Threat Intelligence Support. The network and host security
solutions [44], [19], [48] maintain each their own knowledge
bases for detections. However, the updates for the knowledge
bases cannot catch up with the speed of growth rate of
threats and malware, resulting in limited coverage of security
solutions. One way to address this issue is by diversifying the
source of threat intelligence and integrate inputs to make a de-
cision. Being connected to host and network security domains
at once, PDNS system can bridge host- and network security
domains for threat information exchange. As an example, the
system can label a program executable as malicious when its
process queries to a known malicious domain and vice versa.

IX. CONCLUSION

In this paper, we presented PDNS, a novel end-point DNS
monitoring system consisting of end-point DNS sensors and a
centralized backend. PDNS utilizes extensive monitoring DNS
activities and the set of host-based features which narrow down
our analysis scope to the process-level. This enhances PDNS
visibility and context of monitoring, thus provides capability
necessary in coping with a new class of stealthy attacks
equipped with various counter forensic techniques.

We trained and evaluated PDNS using real-world and large-
scale data. We deployed PDNS sensors to our enterprise envi-
ronment comprise 126 Windows hosts to collect DNS activities
over a seven-month period, and we also collected over 19K
malware execution instances from sandboxed environments.
To this end, PDNS detection reports a high true positive rate
at 98.55% and a low false positive rate at 0.03% for its training
datasets, and 98.03% for the new and unseen malware dataset.
While PDNS demonstrated its capability in detecting a stealth
attack instance, we also discussed available design options that
PDNS provided in building robust detection features.
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APPENDIX A
FEATURE LIST

Feature Category ID Name
AS Number 1 Number of distinct ASs

2 Distinct AS ratio
3 Number of ASs (normalized t)
4 Number of distinct ASs (normalized t)

Domain and Hostname Domain
5 Number of domains
6 Number of distinct domains
7 Number of domains (normalized t)
8 Number of distinct domains (normalized t)
9 Distinct domain ratio
10 Average domain entropy
11 Median of domain entropy
12 SD of domain entropy
13 Average domain length
14 Median of domain length
15 SD of domain length

Hostname
16 Number of hostnames
17 Number of distinct hostnames
18 Number of hostnames (normalized t)
19 Number of distinct hostnames (normalized t)
20 Distinct hostname ratio
21 Average hostname entropy
22 Median of hostname entropy
23 SD of hostname entropy
24 Average hostname length
25 Median of hostname length
26 SD of hostname length

Domain TTL 27 Average domain TTL
28 Median of domain TTL
29 SD of domain TTL

Domain Duration Registered duration (days)
30 Average registered duration
31 Median of registered duration
32 SD of registered duration
33 Average registered duration of distinct domains
34 Median of registered duration of distinct domains
35 SD of registered duration of distinct domains

Renewed duration (days)
36 Average renewed duration
37 Median of renewed duration
38 SD of renewed duration
39 Average renewed duration of distinct domain
40 Median of renewed duration of distinct domain
41 SD of renewed duration of distinct domain

Domain Registrant 42 Number of registrants
43 Number of distinct registrants
44 Number of registrants (normalized t)
45 Number of distinct registrants (normalized t)
46 Distinct registrant ratio

Location 47 Distinct domain’s country ratio
48 Distinct IP’s country ratio
49 Domain’s and IP’s country correlation score
50 Distinct domain’s continent ratio
51 Distinct IP’s continent ratio
52 Domain’s and IP’s continent correlation score

Domain Resolve FR 53 Domain resolve failure rate (%)
Code Signing 54 Sign and verify
Publisher and Registrant Software publisher and domain registrant

55 Levenshtein dist. (setup t)
56 Levenshtein dist. on partial string (setup t)
57 Levenshtein dist. (entire t)
58 Levenshtein dist. on partial string (entire t)

Loaded DLLs 59 Loaded Graphic User Interface (GUI) DLLs
60 Loaded User Interaction (UI) DLL
61 Loaded Web Communication (Web Comm) DLLs

t: process run time

TABLE IV: All features (61 features in total).

APPENDIX B
FEATURE IMPORTANCE RANKING
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Fig. 8: Feature importance ranking

Figure 8 shows feature importance ranked by MDI (feature
importance) score (Section V-G), where each feature ID (y-
axis) represents a feature mapped from the ID in Table IV.
Both 2015- and 2017-dataset have an average feature impor-
tance score at 0.016 (SD 0.02). The maximum scores of 2015
and 2017 are 0.10 and 0.12, and minimum scores are 0.0005
and 0.0002, respectively.
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